\(\dfrac{6x-2}{3x^2+1}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2021

\(A=\dfrac{6x-2}{3x^2+1}\\ \Leftrightarrow3Ax^2+A=6x-2\\ \Leftrightarrow3Ax^2-6x+A+2=0\)

Coi đây là PT bậc 2 ẩn x, PT có nghiệm 

\(\Leftrightarrow\Delta'=9-3\left(A+2\right)\ge0\\ \Leftrightarrow3-3A\ge0\\ \Leftrightarrow A\le1\)

Vậy A chỉ có max, không có min

\(A_{max}=1\Leftrightarrow3x^2+1=6x-2\Leftrightarrow3\left(x-1\right)^2=0\Leftrightarrow x=1\)

3 tháng 7 2019

Ta có:

A = \(\frac{-5}{3x^2-6x+108}=\frac{-5}{3\left(x^2-2x+1\right)+105}=\frac{-5}{3\left(x-1\right)^2+105}\)

Ta luôn có: (x - 1)2 \(\ge\)\(\forall\)x ---> 3(x - 1)2 \(\ge\)\(\forall\)x

=> 3(x - 1)2 + 105 \(\ge\) 105 \(\forall\)x

=> \(-\frac{5}{3\left(x-1\right)^2+105}\ge-\frac{1}{21}\)\(\forall\)x

hay A \(\ge\)-1/21 \(\forall\)x

Dấu "=" xảy ra khi: x - 1 = 0 <=> x = 1

Vậy Amin = -1/21 tại x = 1

3 tháng 7 2019

Ta có:

\(A=\frac{-5}{3x^2-6x+108}=\frac{-5}{3x^2-6x+3+105}=\frac{-5}{3\left(x-1\right)^2+105}\)

\(3\left(x-1\right)^2+105\ge105\)\(,\forall x\)

\(\Rightarrow\frac{1}{3\left(x-1\right)^2+105}\le\frac{1}{105}\Rightarrow\frac{-1}{3\left(x-1\right)^2+105}\ge-\frac{1}{105}\)\(\Rightarrow\frac{-5}{3\left(x-1\right)^2+105}\ge-\frac{5}{105}=-\frac{1}{21}\) \(GTNNA=-\frac{1}{21}\Leftrightarrow3\left(x-1\right)^2=0\)

                                         \(\Rightarrow\left(x-1\right)^2=0\)

                                                 \(\Rightarrow x-1=0\)

                                                                \(x=1\)

Vậy \(GTNNA=-\frac{1}{21}\Leftrightarrow x=1\)

20 tháng 11 2017

em chịu ạ! Tịt rùi! 

13 tháng 12 2018

\(A=\frac{3x^2-6x+9}{x^2-2x+3}=3\)

4 tháng 5 2017

a) giải phương trình

\(\dfrac{2x^2-3x-2^{ }}{_{ }x^2-4}\) = 2

=>\(\dfrac{2x^2-3x-2}{x^2-4}\) = \(\dfrac{2\left(x^2-4\right)}{x^2-4}\)

=>2x2 - 3x - 2 = 2(x2 - 4)

<=>2x2 -3x - 2 = 2x2 - 8

<=>2x2 - 2x2 - 3x = -8 + 2

<=>-3x = -6

<=> x = 2

Vậy không tồn tại giá trị nào của x thỏa mãn điều kiện của bài toán

b) Ta phải giải phương trình

\(\dfrac{6x-1}{3x+2}\) = \(\dfrac{2x+5}{x-3}\)

=>x = \(\dfrac{-7}{38}\)

c) Ta phải giải phương trình

\(\dfrac{y+5}{y-1}\) - \(\dfrac{y+1}{y-3}\) = \(\dfrac{-8}{\left(y-1\right)\left(y+1\right)}\)

không tồn tại giá trị nào của y thỏa mãn điều kiện của bài toán

24 tháng 6 2017

Phân thức đại số

22 tháng 10 2021

\(1,a,A=x^2-6x+25\)

\(=x^2-2.x.3+9-9+25\)

\(=\left(x-3\right)^2+16\)

Ta có :

\(\left(x-3\right)^2\ge0\)Với mọi x

\(\Rightarrow\left(x-3\right)^2+16\ge16\)

Hay \(A\ge16\)

\(\Rightarrow A_{min}=16\)

\(\Leftrightarrow x=3\)

22 tháng 10 2021

\(b,B=4x^2+4x-2\)

\(B=4x^2+4x+1-3\)

\(B=\left(4x^2+4x+1\right)-3\)

\(B=\left(2x+1\right)^2-3\)

Ta có : 

\(\left(2x+1\right)^2\ge0\)với mọi x

\(\Rightarrow\left(2x+1\right)^2-3\ge-3\)

\(\Leftrightarrow B\ge-3\)

\(\Rightarrow B_{min}=-3\)

\(\Leftrightarrow x=-\frac{1}{2}\)