Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(2x+1\right)\left(x^2+1\right)+\dfrac{4}{2x+1}\) (chia đa thức)
Để A nguyên \(\Rightarrow4⋮2x+1\Rightarrow\left(2x+1\right)=\left\{-4;-2;-1;1;2;4\right\}\)
\(\Rightarrow x=\left\{-\dfrac{5}{2};-\dfrac{3}{2};-1;0;\dfrac{1}{2};\dfrac{3}{2}\right\}\)
x thỏa mãn đk đề bài là \(x=\left\{-1;0\right\}\)
x+y=1=>y=1-x
\(Q=2x^2-y^2+x+\frac{1}{x}+2020\)\(=2x^2-\left(1-x\right)^2+x+\frac{1}{x}+2020\)\(=2x^2-\left(1-2x+x^2\right)+x+\frac{1}{x}+2020\)\(=2x^2-1+2x-x^2+x+\frac{1}{x}+2020\)
\(=\left(x^2+2x+1\right)+\left(x+\frac{1}{x}\right)+2018\)\(=\left(x+1\right)^2+\left(x+\frac{1}{x}\right)+2018\)
Ta có: \(\left(x+1\right)^2\ge0\forall x>0\)
Áp dụng BĐT Cô-si cho 2 số dương \(x\)và \(\frac{1}{x}\):
\(x+\frac{1}{x}\ge2\sqrt{x.\frac{1}{x}}=2\)
\(\Rightarrow Q\ge2+2018=2020\)
Dấu '=' xảy ra \(\Leftrightarrow\hept{\begin{cases}x+1=0\\x=\frac{1}{x}\end{cases}\Leftrightarrow x=-1}\)\(\Rightarrow y=1-\left(-1\right)=2\)
Vậy \(minQ=2020\Leftrightarrow x=-1;y=2\)
\(Q=\frac{\sqrt{x}\cdot\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\frac{\sqrt{x}\cdot\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\frac{2\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)
\(Q=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2\)
\(Q=x+1\)
Không thể tìm được GTLN hay GTNN của Q.
b)
\(\frac{3x+3}{\sqrt{x}}=3\sqrt{x}+\frac{3}{\sqrt{x}}\)
Để \(\frac{3Q}{\sqrt{x}}\) nguyên thì \(\frac{3}{\sqrt{x}}\)nguyên hay \(\sqrt{x}\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
Vì \(\sqrt{x}\)dương nên \(\sqrt{x}\in\left\{1;3\right\}\)
Vậy x=1, x=9 là các giá trị cần tìm
\(M=y^2+2y\left(x+1\right)+\left(x+1\right)^2-\left(x+1\right)^2+5x^2-2x+2016\)
\(M=\left(y+x+1\right)^2+4x^2-4x+1+2014\)
\(M=\left(y+x+1\right)^2+\left(2x-1\right)^2+2014\)
Dễ thấy \(\left(y+x+1\right)^2\ge0\forall x;y\)và \(\left(2x-1\right)^2\ge0\forall x\)
Do đó \(M\ge2014\forall x;y\)=> GTNN của M = 2014 khi \(\hept{\begin{cases}2x-1=0\\y+x+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=-\frac{3}{2}\end{cases}}}\).
\(S=\left(x^2+y^2+1+2xy+2x+2y\right)+\left(y^2-4y+4\right)+2021\)
\(S=\left(x+y+1\right)^2+\left(y-2\right)^2+2021\ge2021\)
Dấu "=" xảy ra khi \(\left(x;y\right)=\left(-3;2\right)\)
bài 5 nhé:
a) (a+1)2>=4a
<=>a2+2a+1>=4a
<=>a2-2a+1.>=0
<=>(a-1)2>=0 (luôn đúng)
vậy......
b) áp dụng bất dẳng thức cô si cho 2 số dương 1 và a ta có:
a+1>=\(2\sqrt{a}\)
tương tự ta có:
b+1>=\(2\sqrt{b}\)
c+1>=\(2\sqrt{c}\)
nhân vế với vế ta có:
(a+1)(b+1)(c+1)>=\(2\sqrt{a}.2\sqrt{b}.2\sqrt{c}\)
<=>(a+1)(b+1)(c+1)>=\(8\sqrt{abc}\)
<=>(a+)(b+1)(c+1)>=8 (vì abc=1)
vậy....
\(A=\frac{x}{x^2+1}+\frac{5\left(x^2+1\right)}{2x}=\frac{x}{x^2+1}+\frac{x^2+1}{4x}+\frac{9}{4}.\frac{x^2+1}{x}\)
\(\ge2\sqrt{\frac{x}{x^2+1}.\frac{x^2+1}{4x}}+\frac{9}{4}.\frac{2\sqrt{x^2.1}}{x}=1+\frac{9}{2}=\frac{11}{2}\)
Dấu "=" xảy ra khi \(\left(\frac{x}{x^2+1}=\frac{x^2+1}{4x}\text{ và }x^2=1\right)\Leftrightarrow x=1\)
Vậy GTNN của biểu thức là 11/2.
Đây là toán 9 mà?
\(A=\frac{2x+1}{x^2+2}\Leftrightarrow Ax^2-2x+\left(2A-1\right)=0\) (1)
+)A = 0 thì \(x=-\frac{1}{2}\)
+)A khác 0 thì (1) là pt bậc 2.(1) có nghiệm tức là \(\Delta'=1-A\left(2A-1\right)\ge0\)
\(\Leftrightarrow-2A^2+A+1\ge0\Leftrightarrow-\frac{1}{2}\le A\le1\)
Thay vào giải x
Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(A=\left|2x-2\right|+\left|2x-2016\right|=\left|2-2x\right|+\left|2x-2016\right|\)
\(\ge\left|2-2x+2x-2016\right|=2014\)
Dấu "=" xảy ra khi \(1\le x\le1008\)
Vậy \(Min_A=2014\) khi \(1\le x\le1008\)