K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2016

\(A=2x^2+3x+y^2+y+15=2x^2+2\cdot2\cdot x\cdot\frac{3}{4}+2\cdot\frac{3^2}{4^2}-\frac{9}{8}+y^2+2\cdot y\cdot\frac{1}{2}+\frac{1}{2^2}-\frac{1}{8}+15.\)

\(A=2\cdot\left(x+\frac{3}{4}\right)^2+\left(y+\frac{1}{2}\right)^2+\frac{55}{4}\ge\frac{55}{4}\forall x;y\)

Vậy, GTNN của A = 55/4 khi x = -3/4 và y = -1/2

31 tháng 10 2016

a) \(3x^2-9x+5=3\left(x-\frac{3}{2}\right)^2-\frac{7}{4}\ge-\frac{7}{4}\)

Dấu "=" xảy ra khi x = 3/2

Vậy BT đạt giá trị nhỏ nhất bằng -7/4 khi x = 3/2

b/ \(x^2+y^2+x-y-1=\left(x^2+x+\frac{1}{4}\right)+\left(y^2-y+\frac{1}{4}\right)-\frac{3}{2}=\left(x+\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2-\frac{3}{2}\ge-\frac{3}{2}\)

Dấu "=" xảy ra khi \(\begin{cases}x=-\frac{1}{2}\\y=\frac{1}{2}\end{cases}\)

Vậy BT đạt giá trị nhỏ nhất bằng -3/2 khi (x;y) = (-1/2;1/2)

c/ \(2x^2+2x+1=2\left(x+\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\)

Dấu "=" xảy ra khi x = -1/2

Vậy BT đạt giá trị nhỏ nhất bằng 1/2 khi x = -1/2

31 tháng 10 2016

câu hỏi hay v~

27 tháng 12 2021

\(A=\left(x^2+2\cdot\dfrac{3}{2}x+\dfrac{9}{4}\right)-\dfrac{5}{4}=\left(x+\dfrac{3}{2}\right)^2-\dfrac{5}{4}\ge-\dfrac{5}{4}\\ A_{min}=-\dfrac{5}{4}\Leftrightarrow x=-\dfrac{3}{2}\\ B=\left(x^2+2xy+y^2\right)+\left(x^2+6x+9\right)+3\\ B=\left(x+y\right)^2+\left(x+3\right)^2+3\ge3\\ B_{min}=3\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-3\end{matrix}\right.\\ C=-\left(x^2-2x+1\right)+1=-\left(x-1\right)^2+1\le1\\ C_{max}=1\Leftrightarrow x=1\)

3 tháng 3 2018

mấy bạn chuyên toán giải giùm mk bài b) giùm ạ, mk đaq rất cần

9 tháng 3 2020

a) \(A=4x^2-12x+100=\left(2x\right)^2-12x+3^2+91=\left(2x-3\right)^2+91\)

Ta có: \(\left(2x-3\right)^2\ge0\forall x\inℤ\)

\(\Rightarrow\left(2x-3\right)^2+91\ge91\)

hay A \(\ge91\)

Dấu "=" xảy ra <=> \(\left(2x-3\right)^2=0\)

<=> 2x-3=0

<=> 2x=3

<=> \(x=\frac{3}{2}\)

Vậy Min A=91 đạt được khi \(x=\frac{3}{2}\)

b) \(B=-x^2-x+1=-\left(x^2+x-1\right)=-\left(x^2+x+\frac{1}{4}-\frac{5}{4}\right)=-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)

Ta có: \(-\left(x+\frac{1}{2}\right)^2\le0\forall x\)

\(\Rightarrow-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\le\frac{5}{4}\) hay B\(\le\frac{5}{4}\)

Dấu "=" \(\Leftrightarrow-\left(x+\frac{1}{2}\right)^2=0\)

\(\Leftrightarrow x+\frac{1}{2}=0\)

\(\Leftrightarrow x=\frac{-1}{2}\)

Vậy Max B=\(\frac{5}{4}\)đạt được khi \(x=\frac{-1}{2}\)

9 tháng 3 2020

\(C=2x^2+2xy+y^2-2x+2y+2\)

\(C=x^2+2x\left(y-1\right)+\left(y-1\right)^2+x^2+1\)

\(\Leftrightarrow C=\left(x+y-1\right)^2+x^2+1\)

Ta có: 

\(\hept{\begin{cases}\left(x+y-1\right)^2\ge0\forall x;y\inℤ\\x^2\ge0\forall x\inℤ\end{cases}}\)

\(\Leftrightarrow\left(x+y-1\right)^2+x^2+1\ge1\)

hay C\(\ge\)1

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x+y-1\right)^2=0\\x^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=1\\x=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=1\\x=0\end{cases}}}\)

Vậy Min C=1 đạt được khi y=1 và x=0

6 tháng 4 2020

Bạn có ghi nhầm đề không vậy? 

25 tháng 7 2018

Ai giúp mik vs

25 tháng 7 2018

Huhu ai giúp vs

12 tháng 7 2016

B= \(\frac{7}{4}\)

C= \(\frac{1}{2}\)

13 tháng 7 2016

bạn có thể nói rõ cách làm không