K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2021

\(b)B=\left|x-\frac{1}{2}\right|+\frac{3}{4}\)

Dùng KT \(\left|x\right|\ge0\)\(\forall\)\(x\)

BG :

Ta có : \(\left|x-\frac{1}{2}\right|\ge0\)\(\forall\)\(x\)

\(\Rightarrow\)\(\left|x-\frac{1}{2}\right|+\frac{3}{4}\ge0+\frac{3}{4}\)\(\forall\)\(x\)

\(\Rightarrow\)\(\left|x-\frac{1}{2}\right|+\frac{3}{4}\ge\frac{3}{4}\)\(\forall\)\(x\)

Hay \(B\ge\frac{3}{4}\)\(\forall\)\(x\)

Dấu "=" xảy ra khi :

 \(\Leftrightarrow\)\(\left|x-\frac{1}{2}\right|=0\)

\(\Leftrightarrow x-\frac{1}{2}=0\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy GTNN của \(B=\frac{3}{4}\)đạt được khi \(x=\frac{1}{2}\)

14 tháng 9 2021

\(A=\left|x+\frac{3}{2}\right|\ge0\)

\(MinA=0\Rightarrow\left|x+\frac{3}{2}\right|=0\Rightarrow x=\frac{-3}{2}\)

\(B=\left|x-\frac{1}{2}\right|+\frac{3}{4}\)

\(B\ge\frac{3}{4}\)do\(\left|x-\frac{1}{2}\right|\ge0\)

\(MinB=\frac{3}{4}\Rightarrow\left|x-\frac{1}{2}\right|=0\Rightarrow x=\frac{1}{2}\)

28 tháng 3 2019

\(a.\)\(A=|x|+|2014-x|\ge|x+2014-x|=2014\)

Dấu '=' xảy ra khi\(x\left(2014-x\right)>0\)

TH1:\(\hept{\begin{cases}x>0\\2014-x>0\end{cases}\Leftrightarrow0< x< 2014\left(n\right)}\)

TH2:\(\hept{\begin{cases}x< 0\\2014-x< 0\end{cases}\left(l\right)}\)

Vậy \(A_{min}=2014\)khi\(0< x< 2014\)

\(b.\)\(|x^2+|x-1||=x^2+2\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+|x-1|=-x^2-2\\x^2+|x-1|=x^2+2\end{cases}\Leftrightarrow\orbr{\begin{cases}|x-1|=-2x^2-2\left(l\right)\\|x-1|=2\left(n\right)\end{cases}}}\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=-2\\x-1=2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=3\end{cases}}}\)

V...

28 tháng 8 2017

Huhu, mik không biết giải mong bạn thông cảm!

28 tháng 8 2017

câu B bài cuối là D= 1 phần 2|x-1|+3 nha mọi ng

24 tháng 9 2018

a, ta có |x|;|x+2|\(\ge\)0

=>GTNN là 2 tại x=-2;x=0;x=-1

b,ta có|5-x|;|7-x|\(\ge\)0

=>GTNN là 2 tại x=7;5;6

2 tháng 10 2016

a) |x+3/4| >/ 0 

|x+3/4| + 1/2 >/ 1/2 

MinA= 1/2  <=>  x+3/4 =0 hay x= -3/4

b) 2|2x-4/3|  >/  0 

2|2x-4/3| -1 >/ -1

Min= -1 <=>  2|2x-4/3| = 0 hay x=2/3

Bài tiếp théo:

a) -2|x+4| \< 0 

-2|x+4| +1 \<  1

MaxA=1  <=> -2|x+4| = 0 hay = -4

b) -3|x-5|   \<  0

-3|x-5| + 11/4  \<  11/4 

MaxB=11/4  <=>  -3|x-5| = 0 hay x=-5  

10 tháng 9 2017

a, Ta có: \(A=\left|x+2\right|+\left|9-x\right|\ge\left|X+2+9-x\right|=11\)

Dấu "=' xảy ra khi \(\left(x+2\right)\left(9-x\right)\ge0\Leftrightarrow-2\le x\le9\)

Vậy MinA = 11 khi -2 =< x =< 9

b, Vì \(\left(x-1\right)^2\ge0\Rightarrow-\left(x-1\right)^2\le0\Rightarrow B=\frac{3}{4}-\left(x-1\right)^2\le\frac{3}{4}\)

Dấu "=" xảy ra khi x = 1

Vậy MaxB = 3/4 khi x=1

10 tháng 9 2017

Ta có :\(A=\left|x+2\right|+\left|9-x\right|\ge\left|x+2+9-x\right|=11\)

Vậy \(A_{min}=11\) khi \(2\le x\le9\)

3 tháng 3 2018

a) Ta có: \(\text{|}5x-2\text{|}\ge0\)

=> \(2\text{|}5x-2\text{|}\ge2.0=0\)

=> \(2\text{|}5x-2\text{|}+4\ge0+4=4\)

Vậy Min(2|5x-2|+4)=4 khi x=\(\frac{2}{5}\)

b) Ta có: \(x^2\ge0\) và \(|y-3|\ge0\)=> \(3|y-3|+5\ge3.0+5=5\)

=> \(x^2+3|y-3|+5\ge0+5=5\)

Vậy Min(x2+3|y-3|+5)=5 khi x =0 và y=3

c) Ta có: |x-1|=|1-x| (Vì hai số x-1 và 1-x là hai số đối nhau, mà giá trị tuyệt đối của hai số đối nhau luôn bằng nhau)

=> |x-1|+|x-2016|=|1-x|+|x-2016|

Ta có: \(\text{|}1-x\text{|}+\text{|}x-2016\text{|}\ge\text{|}1-x+x-2016\text{|}=\text{|}-2015\text{|}=2015\)

Vậy Min(|x-1|+|x-2016|)=2015

Mấy cái này không tìm được giá trị lớn nhất nha bạn

3 tháng 3 2018

Nó thu gon mất cái đề nên mình không thấy được mấy cái đề sau. 3 câu d, e, f bạn lập bản biến thiên ra mà làm