Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức Buniakovsky ta có:
2(x2+y2)=(12+12)(x2+y2)≥(x+y)2=42=16
⇒A≥8
Dấu "=" xảy ra khi và chỉ khi x=y=2
a) \(A=\left(x+4\right)^2+\left|y-5\right|-7\)
Ta thấy : \(\left(x+4\right)^2\ge0\)
\(\left|y-5\right|\ge0\)
\(\Rightarrow\left(x+4\right)^2+\left|y-5\right|-7\ge-7\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x+4\right)^2=0\\\left|y-5\right|=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=-4\\y=5\end{cases}}\)
Vậy \(minA=-7\Leftrightarrow\hept{\begin{cases}x=-4\\y=5\end{cases}}\)
b) \(B=\left(x-4\right)^2+\left|y-5\right|+9\)
Ta thấy : \(\left(x-4\right)^2\ge0\)
\(\left|y-5\right|\ge0\)
\(\Rightarrow\left(x-4\right)^2+\left|y-5\right|+9\ge9\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-4\right)^2=0\\\left|y-5\right|=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=4\\y=5\end{cases}}\)
Vậy \(minB=9\Leftrightarrow\hept{\begin{cases}x=4\\y=5\end{cases}}\)
ta có (x-1)4 >= 0
Vxy2 >= 0
Vy=> y2 + 4>=4
=> |y2 + 4| >= 4
=> A = .... >= -2
vậy GTNN của A bằng -2
dấu "=" xảy ra (=) \(\hept{\begin{cases}x-1=0\\y=0\end{cases}}\left(=\right)\hept{\begin{cases}x=1\\y=0\end{cases}}\)
#Học-tốt