Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: \(M=x^2-10x+3\)
\(=x^2-10x+25-22\)
\(=\left(x^2-10x+25\right)-22\)
\(=\left(x-5\right)^2-22>=-22\forall x\)
Dấu '=' xảy ra khi x-5=0
=>x=5
b: \(N=x^2-x+2\)
\(=x^2-x+\dfrac{1}{4}+\dfrac{7}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{7}{4}>=\dfrac{7}{4}\forall x\)
Dấu '=' xảy ra khi x-1/2=0
=>x=1/2
c: \(P=3x^2-12x\)
\(=3\left(x^2-4x\right)\)
\(=3\left(x^2-4x+4-4\right)\)
\(=3\left(x-2\right)^2-12>=-12\forall x\)
Dấu '=' xảy ra khi x-2=0
=>x=2
Bài 1:
a) \(M=x^2+x+1\)
\(=x^2+2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+1\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x+\frac{1}{2}\right)^2\ge0;\forall x\)
\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge0+\frac{3}{4};\forall x\)
Hay \(M\ge\frac{3}{4};\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x+\frac{1}{2}=0\)
\(\Leftrightarrow x=\frac{-1}{2}\)
Vậy \(MIN\)\(M=\frac{3}{4}\)\(\Leftrightarrow x=\frac{-1}{2}\)
b) \(N=3-2x-x^2\)
\(=-x^2-2x+3\)
\(=-\left(x^2+2x+1\right)+4\)
\(=-\left(x+1\right)^2+4\)
Vì \(-\left(x+1\right)^2\le0;\forall x\)
\(\Rightarrow-\left(x+1\right)^2+4\le0+4;\forall x\)
Hay \(N\le4;\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
Vậy MAX \(N=4\)\(\Leftrightarrow x=-1\)
Bài 2:
Vì a chia 3 dư 1 nên a có dạng \(3k+1\left(k\in N\right)\)
Vì b chia 3 dư 2 nên b có dạng \(3t+2\left(t\in N\right)\)
Ta có: \(ab=\left(3k+1\right)\left(3t+2\right)\)
\(=\left(3k+1\right).3t+\left(3k+1\right).2\)
\(=9kt+3t+6k+2\)
\(=3.\left(3kt+t+2k\right)+2\)chia 3 dư 2 .
\(\)
1a) Ta có: M = x2 + x + 1 = (x2 + x + 1/4) + 3/4 = (x + 1/2)2 + 3/4
Ta luôn có: (x + 1/2)2 \(\ge\)0 \(\forall\)x
=> (x + 1/2)2 + 3/4 \(\ge\)3/4 \(\forall\)x
Dấu "=" xảy ra khi : x + 1/2 = 0 <=> x = -1/2
Vậy Mmin = 3/4 tại x = -1/2
b) Ta có: N = 3 - 2x - x2 = -(x2 + 2x + 1) + 4 = -(x + 1)2 + 4
Ta luôn có: -(x + 1)2 \(\le\)0 \(\forall\)x
=> -(x + 1)2 + 4 \(\le\)4 \(\forall\)x
Dấu "=" xảy ra khi : x + 1 = 0 <=> x = -1
Vậy Nmax = 4 tại x = -1
a/ \(M=x^2+y^2-x+6y+10=\left(x^2-x+\frac{1}{4}\right)+\left(y^2+6y+9\right)+10-\frac{1}{4}-9\)
\(=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Suy ra Min M = 3/4 <=> (x;y) = (1/2;-3)
b/
1/ \(A=4x-x^2+3=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)
Suy ra Min A = 7 <=> x = 2
2/ \(B=x-x^2=-\left(x^2-x+\frac{1}{4}\right)+\frac{1}{4}=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)
Suy ra Min B = 1/4 <=> x = 1/2
3/ \(N=2x-2x^2-5=-2\left(x^2-x+\frac{1}{4}\right)-5+\frac{1}{2}=-2\left(x-\frac{1}{2}\right)^2-\frac{9}{2}\)
\(\ge-\frac{9}{2}\)
Suy ra Min N = -9/2 <=> x = 1/2
a: \(M=2x^2-4x+3\)
\(=2x^2-4x+2+1\)
\(=2\left(x^2-2x+1\right)+1\)
\(=2\left(x-1\right)^2+1>=1\forall x\)
Dấu '=' xảy ra khi x-1=0
=>x=1
b: \(N=x^2-4x+5+y^2+2y^2\)
\(=x^2-4x+4+3y^2+1\)
\(=\left(x-2\right)^2+3y^2+1>=1\forall x,y\)
Dấu '=' xảy ra khi x-2=0 và y=0
=>x=2 và y=0
\(A=\left(n-1\right)n\left(n+1\right)\left(n+2\right)-3\)
\(=\left[n\left(n+1\right)\right]\left[\left(n-1\right)\left(n+2\right)\right]-3\)
\(=\left(n^2+n\right)\left(n^2+n-2\right)-3\)
\(=\left[\left(n^2+n-1\right)+1\right]\left[\left(n^2+n-1\right)-1\right]-3\)
\(=\left(n^2+n-1\right)^2-1^2-3\)
\(=\left[\left(n^2+2.\frac{1}{2}.n+\frac{1}{4}\right)-1,25\right]^2-4\)
\(=\left[\left(n+\frac{1}{2}\right)^2-1,25\right]^2-4\ge\left(-1,25\right)^2-4=-\frac{39}{16}\)
\(\Rightarrow MinA=-\frac{39}{16}\Leftrightarrow n=-\frac{1}{2}\)
Vậy ...
Đánh đề cẩn thận chứ
\(A=\left(2n+3\right)^2-\left(n-1\right)\left(n-5\right)+2\)
\(A=4n^2+12n+9-n^2+6n-5+2\)
\(A=3n^2+18n+6\)
\(A=3\left(n^2+6n+2\right)\)
\(A=3\left(n^2+2\cdot n\cdot3+3^2-7\right)\)
\(A=3\left[\left(n+3\right)^2-7\right]\)
\(A=3\left(n+3\right)^2-21\ge21\forall n\)
Dấu "=" xảy ra \(\Leftrightarrow n+3=0\Leftrightarrow n=-3\)
Ta có \(A=m^3+n^3+mn\)
\(A=\left(m+n\right)^3-3mn\left(m+n\right)+mn\)
\(A=1-3mn+mn\)
\(A=1-2mn\)
\(A=1-2m\left(1-m\right)\)
\(A=2m^2-2m+1\)
\(A=2\left(m^2-m+\dfrac{1}{2}\right)\)
\(A=2\left(m^2-2m.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{4}\right)\)
\(A=2\left(m-\dfrac{1}{2}\right)^2+\dfrac{1}{2}\)
Do \(\left(m-\dfrac{1}{2}\right)^2\ge0\) nên \(A\ge\dfrac{1}{2}\). ĐTXR \(\Leftrightarrow m=\dfrac{1}{2}\Rightarrow n=\dfrac{1}{2}\).
Vậy GTNN của A là \(\dfrac{1}{2}\) khi \(m=n=\dfrac{1}{2}\)