Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
\(\sqrt{x}\ge0\Rightarrow\frac{1}{2}+\sqrt{x}\ge\frac{1}{2}+0=\frac{1}{2}\Rightarrow P_{min}=\frac{1}{2}\) khi và chỉ khi \(\sqrt{x}=0\Rightarrow x=0\)
b) Ta có:
\(2.\sqrt{x-1}\ge0\Rightarrow7-2.\sqrt{x-1}\le7-2.0=7\Rightarrow Q_{max}=7\)khi và chỉ khi \(2.\sqrt{x-1}=0\Rightarrow\sqrt{x-1}=0\Rightarrow x-1=0\Rightarrow x=1\)
a) A có giá trị nhỏ nhất khi \(\sqrt{x+2}=0\)
Vậy giá trị nhỏ nhất của A là \(\dfrac{3}{11}\).
b) Ta có: -3\(\sqrt{x-5}\) \(\le0\)
=> B có giá trị lớn nhất khi -3\(\sqrt{x-5}\) = 0
Vậy giá trị lớn nhất của B là \(\dfrac{5}{17}\).
Ta có căn(x + 5) + 2/11 >= 2/11 (vì căn (x+5) >= 0)
Vậy A đạt giá trị nhỏ nhất là 2/11 khi và chỉ khi x = -5
Ta có : 3/19 - 3.căn(x - 2) <= 3/19 ( vì -3.căn(x-2) <= 0)
Vậy B đạt giá trị lớn nhất là 3/19 khi và chỉ khi x = 5
C = (căn - 3)/2 có giá trị nguyên nên (căn - 3) chia hết cho 2
Suy ra x là số chính phương lẻ
Vì x < 50 nên x thuộc { 1^2;3^2;5^2;7^2} hay x thuộc {1;9;25;49}
Thời gian có hạn copy cái này hộ mình vào google xem nha: :
Link : https://lazi.vn/quiz/d/16491/nhac-edm-la-loai-nhac-the-loai-gi
Vào xem xong các bạn nhận được 1 thẻ cào mệnh giá 100k nhận thưởng bằng cách nhắn tin vs mình và 1 phần thưởng bí mật là chiếc áo đá bóng,....
Có 500 giải nhanh nha đã có 200 người nhận rồi. Mình là phụ trách
OK<3
1a/ Để B có nghĩa thì x+1≥0 => x≥-1
b/ B>2
=> \(\sqrt{x+1}>2\)
\(\Rightarrow x+1>4\Rightarrow x>3\)
2a/ Để A có nghĩa thì 2003-x≥0 => x≤2003
b/ Ta có \(\sqrt{2003-x}\ge0\forall x\)
=>A≥2004
MinA=2004 khi x=2003
Chúc bạn học tốt!
a) Để \(2018+\sqrt{2018-x}\) thì \(\sqrt{2018-x}\ge0\Leftrightarrow x\le2018\)
b) Để A đạt giá trị nhỏ nhất thì \(\sqrt{2018-x}\) nhỏ nhất. Mà \(\sqrt{2018-x}\ge0\) nên
\(A=2018+\sqrt{2018-x}\ge2018\)
Vậy \(A_{min}=2018\Leftrightarrow\sqrt{2018-x}=0\Leftrightarrow x=2018\)
a) Để A có nghĩa thì \(2003-x\ge0\Rightarrow x\le2003\)
b) Có: \(\sqrt{2003-x}\ge0\forall x\le2003\)
\(\Rightarrow A=2004+\sqrt{2003-x}\ge2004\forall x\le2003\)
Dấu ''=" xảy ra khi \(\sqrt{2003-x}=0\)
\(\Leftrightarrow2003-x=0\Leftrightarrow x=2003\)
Vậy với x = 2003 thì A đạt GTNN là 2004
Giá trị lớn nhất nhá
\(a,-\left(x-3\right)^2+2\)
Ta thấy \(\left(x-3\right)^2\ge0\Rightarrow-\left(x-3\right)^2\le0\forall x\)
\(\Rightarrow-\left(x-3\right)^2+2\le2\)
Dấu "=" xảy ra khi \(x-3=0\Leftrightarrow x=3\)
...
\(b,-\left|2x-1\right|-5\)
Ta thấy \(\left|2x-1\right|\ge0\Rightarrow-\left|2x-1\right|\le0\forall x\)
\(\Rightarrow-\left|2x-1\right|-5\le-5\)
Dấu "=" xảy ra khi \(2x-1=0\Leftrightarrow x=\frac{1}{2}\)
....
c, \(\sqrt{3}-x^2\)
Ta thấy \(x^2\ge0\Rightarrow-x^2\le0\forall x\)
\(\Rightarrow\sqrt{3}-x^2\le\sqrt{3}\)
Dấu "=" xảy ra khi \(x=0\)
...