Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=2x^2+4y^2+4xy+2x+4y+9\)
\(=\left(x^2+4y^2+1+4xy+4y+2x\right)+x^2+8\)
\(=\left(x+2y+1\right)^2+x^2+8\)
Ta có: \(\hept{\begin{cases}\left(x+2y+1\right)^2\ge0\forall x;y\\x^2\ge0\forall x\end{cases}\Rightarrow\left(x+2y+1\right)^2+x^2+8\ge8\forall x;y\Rightarrow M\ge8\forall x;y}\)
Dấu "=" xảy ra khi:
\(\hept{\begin{cases}x+2y+1=0\\x=0\end{cases}\Rightarrow\hept{\begin{cases}2y+1=0\\x=0\end{cases}\Rightarrow}\hept{\begin{cases}y=-\frac{1}{2}\\x=0\end{cases}}}\)
Vậy GTNN của M là 8 khi \(x=0,y=-\frac{1}{2}\)
Chúc bạn học tốt.
1.ta có: 7x-2x^2=-2(x^2-7/2x)
=-2(x^2-2*7/4x+49/16-49/16)
=-2(x-7/4)^2+49/8 <=49/8
Dấu bằng xáy ra <=> x=7/4
Vậy max=49/8 <=> x=7/4
\(M=\left(x^2+4x+4\right)+1=\left(x+2\right)^2+1\ge0+1=1\)
\(Mmin=1\) khi x+2 = 0 => x = -2
M=x2 +4x +5
=>M=x(x+4)+5
Ta có:
x(x+4) lớn hơn hoặc bằng 0
=>x(x+4)+5 lớn hơn hoặc bằng 5
=>M lớn hơn hoặc bằng 5
Dấu "=" xảy ra <=> x = 0 hoặc x+4=0 => x= - 4
Vậy M đạt GTNN là 5 <=> x=0 hoặc x= -4
\(2x^2+10x-1\)
\(=2\left(x^2+5x-\frac{1}{2}\right)\)
\(=2\left(x^2+2.x.\frac{5}{2}+\frac{25}{4}-\frac{27}{4}\right)\)
\(=2\left(\left(x+\frac{5}{2}\right)^2-\frac{27}{4}\right)\)
\(=\frac{-27}{2}-2\left(x+\frac{5}{2}\right)^2\le\frac{-27}{2}\)
\(MinB=\frac{-27}{2}\Leftrightarrow x+\frac{5}{2}=0\Rightarrow x=-\frac{5}{2}\)
M = x2 + 4x + 2 = ( x2 + 4x + 4 ) - 2 = ( x + 2 )2 - 2 ≥ -2 ∀ x
Dấu "=" xảy ra <=> x = -2 . Vậy MinM = -2
N = 4x2 - 8x + 4 = ( 2x - 2 )2 ≥ 0 ∀ x
Dấu "=" xảy ra <=> x = 1 . Vậy MinN = 0
E = x( x - 6 ) - 6 = x2 - 6x - 6 = ( x2 - 6x + 9 ) - 15 = ( x - 3 )2 - 15 ≥ -15 ∀ x
Dấu "=" xảy ra <=> x = 3 . Vậy MinE = -15