K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2016

a) \(A=9x^2+5x+1\)

\(A=9x^2+5x+\frac{25}{36}+\frac{11}{36}\)

\(A=\left(3x+\frac{5}{6}\right)^2+\frac{11}{36}\) 

Có:  \(\left(3x+\frac{5}{6}\right)^2\ge0\)

\(\Rightarrow\left(3x+\frac{5}{6}\right)^2+\frac{11}{36}\ge\frac{11}{36}\)

Dấu = xảy ra khi: \(\left(3x+\frac{5}{6}\right)^2=0\Rightarrow3x+\frac{5}{6}=0\)

\(\Rightarrow x=-\frac{5}{18}\)

Vậy: \(Min_A=\frac{11}{36}\) tại \(x=-\frac{5}{18}\)

b) \(B=4x^2+12x-8\)

\(B=4x^2+12x+9-17\)

\(B=\left(2x+3\right)^2-17\)

Có: \(\left(2x+3\right)^2\ge0\)

\(\Rightarrow\left(2x+3\right)^2-17\ge-17\)

Dấu = xảy ra khi: \(\left(2x+3\right)^2=0\Rightarrow2x+3=0\)

\(\Rightarrow x=-\frac{3}{2}\)

Vậy: \(Min_B=-17\) tại \(x=-\frac{3}{2}\)

5 tháng 12 2016

mình chịu

9 tháng 10 2016

a) \(A=9x^2-2x+15\)

\(A=9x^2-2x+\frac{1}{9}+\frac{134}{9}\)

\(A=\left(3x+\frac{1}{3}\right)^2+\frac{134}{9}\)

Có: \(\left(3x+\frac{1}{3}\right)^2\ge0\Rightarrow\left(3x+\frac{1}{3}\right)^2+\frac{134}{9}\ge\frac{134}{9}\)

Dấu '=' xảy ra khi: \(\left(3x+\frac{1}{3}\right)^2=0\Rightarrow3x+\frac{1}{3}=0\Rightarrow x=-\frac{1}{9}\)

Vậy: \(Min_A=\frac{134}{9}\) tại \(x=-\frac{1}{9}\)

b) \(B=3x^2+x+1\)

\(B=3x^2+x+\frac{1}{12}+\frac{11}{12}\)

\(B=\left(\sqrt{3}x+\sqrt{\frac{1}{12}}\right)^2+\frac{11}{12}\)

Có: \(\left(\sqrt{3}x+\sqrt{\frac{1}{12}}\right)^2\ge0\Rightarrow\left(\sqrt{3}x+\sqrt{\frac{1}{12}}\right)^2+\frac{11}{12}\ge\frac{11}{12}\)

Dấu '=' xảy ra khi: \(\left(\sqrt{3}x+\sqrt{\frac{1}{12}}\right)^2=0\Rightarrow\sqrt{3}x+\sqrt{\frac{1}{12}}=0\Rightarrow x=-\frac{1}{6}\)

Vậy: \(Min_B=\frac{11}{12}\) tại \(x=-\frac{1}{6}\)

c) \(C=x^2-6y+4x+y^2+38\)

\(C=\left(x^2+4x+4\right)+\left(y^2-6y+9\right)+25\)

\(C=\left(x+2\right)^2+\left(y-3\right)^2+25\)

Có: \(\left(x+2\right)^2+\left(y-3\right)^2\ge0\Rightarrow\left(x+2\right)^2+\left(y-3\right)^2+25\ge25\)

Dấu = xảy ra khi: \(\hept{\begin{cases}\left(x+2\right)^2=0\\\left(y-3\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x+2=0\\y-3=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-2\\y=3\end{cases}}\)

Vậy: \(Min_C=25\) tại \(\hept{\begin{cases}x=-2\\y=3\end{cases}}\)

9 tháng 6 2017

a,

\(\Leftrightarrow A=\left(\frac{x+1}{\left(x+1\right)\left(x-1\right)}+\frac{x}{\left(x+1\right)\left(x-1\right)}\right):\frac{2x+1}{\left(x+1\right)^2}\)

\(\Leftrightarrow A=\frac{2x+1}{\left(x+1\right)\left(x-1\right)}\cdot\frac{\left(x+1\right)^2}{2x+1}\)

\(\Leftrightarrow A=\frac{x+1}{x-1}\)

b, dùng máy tính kq là-3

7 tháng 7 2017

a)

-x2+x+1=-(x2-x-1)=\(-\left(x^2-2.\frac{1}{2}.x+\frac{1}{4}-\frac{5}{4}\right)=-\left[\left(x-\frac{1}{2}\right)^2-\frac{5}{4}\right]=\frac{5}{4}-\left(x-\frac{1}{2}\right)^2\)

Vì \(\left(x-\frac{1}{2}\right)^2\ge0\Rightarrow\frac{5}{4}-\left(x-\frac{1}{2}\right)^2\le\frac{5}{4}\Leftrightarrow-x^2+x+1\le\frac{5}{4}\)

Dấu "=" xảy ra khi (x-1/2)2=0 => x-1/2=0 => x=1/2

Vậy max của biểu thức -x2+x+1 là 5/4 khi x=1/2

b) câu này trình bày tương tự câu trên thôi

\(x^2+x+1=x^2+2.\frac{1}{2}.x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu "=" xảy ra khi x=-1/2