\(A=9x^2-2x+15\)
b, \(B=3x^2+x+1\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2016

a) \(A=9x^2-2x+15\)

\(A=9x^2-2x+\frac{1}{9}+\frac{134}{9}\)

\(A=\left(3x+\frac{1}{3}\right)^2+\frac{134}{9}\)

Có: \(\left(3x+\frac{1}{3}\right)^2\ge0\Rightarrow\left(3x+\frac{1}{3}\right)^2+\frac{134}{9}\ge\frac{134}{9}\)

Dấu '=' xảy ra khi: \(\left(3x+\frac{1}{3}\right)^2=0\Rightarrow3x+\frac{1}{3}=0\Rightarrow x=-\frac{1}{9}\)

Vậy: \(Min_A=\frac{134}{9}\) tại \(x=-\frac{1}{9}\)

b) \(B=3x^2+x+1\)

\(B=3x^2+x+\frac{1}{12}+\frac{11}{12}\)

\(B=\left(\sqrt{3}x+\sqrt{\frac{1}{12}}\right)^2+\frac{11}{12}\)

Có: \(\left(\sqrt{3}x+\sqrt{\frac{1}{12}}\right)^2\ge0\Rightarrow\left(\sqrt{3}x+\sqrt{\frac{1}{12}}\right)^2+\frac{11}{12}\ge\frac{11}{12}\)

Dấu '=' xảy ra khi: \(\left(\sqrt{3}x+\sqrt{\frac{1}{12}}\right)^2=0\Rightarrow\sqrt{3}x+\sqrt{\frac{1}{12}}=0\Rightarrow x=-\frac{1}{6}\)

Vậy: \(Min_B=\frac{11}{12}\) tại \(x=-\frac{1}{6}\)

c) \(C=x^2-6y+4x+y^2+38\)

\(C=\left(x^2+4x+4\right)+\left(y^2-6y+9\right)+25\)

\(C=\left(x+2\right)^2+\left(y-3\right)^2+25\)

Có: \(\left(x+2\right)^2+\left(y-3\right)^2\ge0\Rightarrow\left(x+2\right)^2+\left(y-3\right)^2+25\ge25\)

Dấu = xảy ra khi: \(\hept{\begin{cases}\left(x+2\right)^2=0\\\left(y-3\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x+2=0\\y-3=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-2\\y=3\end{cases}}\)

Vậy: \(Min_C=25\) tại \(\hept{\begin{cases}x=-2\\y=3\end{cases}}\)

24 tháng 9 2016

a) \(A=9x^2+5x+1\)

\(A=9x^2+5x+\frac{25}{36}+\frac{11}{36}\)

\(A=\left(3x+\frac{5}{6}\right)^2+\frac{11}{36}\) 

Có:  \(\left(3x+\frac{5}{6}\right)^2\ge0\)

\(\Rightarrow\left(3x+\frac{5}{6}\right)^2+\frac{11}{36}\ge\frac{11}{36}\)

Dấu = xảy ra khi: \(\left(3x+\frac{5}{6}\right)^2=0\Rightarrow3x+\frac{5}{6}=0\)

\(\Rightarrow x=-\frac{5}{18}\)

Vậy: \(Min_A=\frac{11}{36}\) tại \(x=-\frac{5}{18}\)

b) \(B=4x^2+12x-8\)

\(B=4x^2+12x+9-17\)

\(B=\left(2x+3\right)^2-17\)

Có: \(\left(2x+3\right)^2\ge0\)

\(\Rightarrow\left(2x+3\right)^2-17\ge-17\)

Dấu = xảy ra khi: \(\left(2x+3\right)^2=0\Rightarrow2x+3=0\)

\(\Rightarrow x=-\frac{3}{2}\)

Vậy: \(Min_B=-17\) tại \(x=-\frac{3}{2}\)

5 tháng 12 2016

mình chịu

4 tháng 5 2017

mình 2k4 ko bt làm

6 tháng 5 2017

 a)    \(B=\frac{3x^2+6x+10}{x^2+2x+5}\)

\(\Leftrightarrow B=3-\frac{5}{x^2+2x+5}\)

\(\Leftrightarrow B=3-\frac{5}{5\left(\frac{x^2}{5}+\frac{2x}{5}+\frac{5}{5}\right)}\Leftrightarrow B=3-\frac{1}{\frac{\left(x^2+2x+1\right)}{5}+\frac{4}{5}}\)( cho \(\left(x+1\right)^2=0\))

\(\Leftrightarrow maxB=3-\frac{1}{\frac{4}{5}}=\frac{7}{4}\)   KHI X= -1

c)  \(D=x^2-2x+y^2+4y+7\)

\(\Leftrightarrow D=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+2\)

\(\Leftrightarrow D=\left(x-1\right)^2+\left(y+2\right)^2+2\)

\(\Leftrightarrow minD=2\)KHI X= 1 và Y= -2

e) Câu này đề có vẻ sai bạn kiểm tra lại giúp mk ! mk làm theo đề đúng nka !

         \(E=\frac{x^2-4x+1}{x^2}\)

\(\Leftrightarrow E=\frac{x^2\left(1-\frac{4}{x}+\frac{1}{x^2}\right)}{x^2}=1-\frac{4}{x}+\frac{1}{x^2}\)

ĐẶT    \(y=\frac{1}{x}\)\(\Leftrightarrow minE=-3\)KHI X = 1/2

Hai câu còn lại tối mk giải tiếp mk bận đi học rùi bạn thông cảm 

19 tháng 10 2016

a) (-x+5)(x+3)

b) x2-y2+x2-xy

(x-y)(x+y)+x(x-y)

(x-y)(2x+y)

d) 10x-6x2-5y+3xy

2x(5-3x)-y(5-3x)

(2x-y)(5-3x)

thông cảm câu c hok bít làm câu a bạn nhân ra là bạn thấy

8 tháng 1 2022

mk mới lớp 5 nên ko bt

24 tháng 10 2016

Phân tích thành nhân tử r tìm x nhé bạn. k đi mình làm

7 tháng 7 2017

a) \(3x^2-5x-12=0\)

\(\Leftrightarrow3x^2+4x-9x-12=0\)

\(\Leftrightarrow x\left(3x+4\right)-3\left(3x+4\right)=0\)

\(\Leftrightarrow\left(3x+4\right)\left(x-3\right)=0\)

\(\Rightarrow\orbr{\begin{cases}3x+4=0\\x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-\frac{4}{3}\\x=3\end{cases}}\)

b) \(7x^2-9x+2=0\)

\(\Leftrightarrow7x^2-7x-2x+2=0\)

\(\Leftrightarrow7x\left(x-1\right)-2\left(x-1\right)=0\).

\(\Leftrightarrow\left(7x-2\right)\left(x-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}7x-2=0\\x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{2}{7}\\x=1\end{cases}}\)