Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B = (x-2)(x-5)(x2-7x-10)
=(x2-7x+10)(x2-7x-10)
=(x2-7x)2-102
=(x2-7x)2-100
=>GTNN của B là 100 <=>x2-7x=0
x(x-7)=0
=>x=0 hoặc x=7
Vậy GTNN của B là 100 khi x=0 hoặc x=7
1) D = x2 - 7x + 6
D = x2 - 2.\(\dfrac{7}{2}x+\dfrac{49}{4}+6-\dfrac{49}{4}\)
D = \(\left(x-\dfrac{7}{2}\right)^2\) - \(\dfrac{25}{4}\)
Do : \(\left(x-\dfrac{7}{2}\right)^2\)≥ 0 ∀x
⇒ \(\left(x-\dfrac{7}{2}\right)^2\) - \(\dfrac{25}{4}\) ≥ - \(\dfrac{25}{4}\)
⇒DMIN = - \(\dfrac{25}{4}\) ⇔ x = \(\dfrac{7}{2}\)
E = 4x2 - 7x + 8
E = 4( x2 - \(2.\dfrac{7}{8}x+\dfrac{49}{64}\)) - \(\dfrac{49}{16}\) + 8
E = 4( x - \(\dfrac{7}{8}\))2 + \(\dfrac{79}{16}\) ≥ \(\dfrac{79}{16}\)
⇒ EMIN = \(\dfrac{79}{16}\) ⇔ x = \(\dfrac{7}{8}\)
Phùng Khánh Linh
muốn gõ dấu \(\ge\) mà không dùng công cụ có hình phép lấy tổng thì làm như thế nào?
x2 - 3x + 2
= x2 - x - 2x + 2
= x(x - 1) - 2(x - 1)
= (x - 1)(x - 2)
3x2 - 7x - 10
= 3x2 + 3x - 10x - 10
= 3x(x + 1) - 10(x + 1)
= (x + 1)(3x - 10)
2x2 - 5x - 7
= 2x2 + 2x - 7x - 7
= 2x(x + 1) - 7(x + 1)
= (x + 1)(2x - 7)
Tìm GTNN
a/ \(A=4x^2+7x+13=\left(4x^2+7x+\frac{49}{16}\right)+\frac{159}{16}=\left(2x+\frac{7}{4}\right)^2+\frac{159}{16}\ge\frac{159}{16}\)
b/ \(B=5-8x+x^2=\left(x^2-8x+16\right)-11=\left(x-4\right)^2-11\ge-11\)
c/ \(C=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)
\(=\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)\)
\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
\(=\left(x^2+5x\right)^2-36\ge-36\)
a) \(A=x^2+3x+7=x^2+2.x.\frac{3}{2}+\frac{9}{4}-\frac{9}{4}+7\)
\(=\left(x+\frac{3}{2}\right)^2+\frac{19}{4}\ge\frac{19}{4}\)
Đẳng thức xảy ra khi x = -3/2
b) \(B=\left[\left(x-2\right)\left(x-5\right)\right]\left(x^2-7x-10\right)\)
\(=\left(x^2-7x+10\right)\left(x^2-7x-10\right)\)
Đặt \(x^2-7x=t\).
\(B=t^2-10^2\ge-10^2=-100\)
Đẳng thức xảy rakhi \(t=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=7\end{matrix}\right.\)
Câu a phần I sai. đề là :
a) A = -3x(x - 5 ) + 3(x2 - 4x ) - 3x + 10
\(A=x^2+2x+6=(x^2+2x+1)+5=(x+1)^2+5\)
Vì \((x+1)^2\geq 0, \forall x\in\mathbb{R}\Rightarrow A\geq 0+5=5\)
Vậy GTNN của $A$ là $5$ khi $(x+1)^2=0$ hay $x=-1$
--------------
\(B=x^2-6x+15=(x^2-2.3x+3^2)+6=(x-3)^2+6\)
Vì \((x-3)^2\geq 0, \forall x\in\mathbb{R}\Rightarrow B\geq 0+6=6\)
Vậy GTNN của $B$ là $6$ khi $x=3$
---------------
\(C=x^2-5x+3=x^2-2.\frac{5}{2}x+(\frac{5}{2})^2-\frac{13}{4}=(x-\frac{5}{2})^2-\frac{13}{4}\)
Vì \((x-\frac{5}{2})^2\geq 0, \forall x\in\mathbb{R}\Rightarrow C\geq 0-\frac{13}{4}=\frac{-13}{4}\)
Vậy \(C_{\min}=\frac{-13}{4}\Leftrightarrow x=\frac{5}{2}\)
\(D=2x^2-7x+1=2(x^2-\frac{7}{2}x)+1\)
\(=2[x^2-2.\frac{7}{4}x+(\frac{7}{4})^2]-\frac{41}{8}\)
\(=2(x-\frac{7}{4})^2-\frac{41}{8}\)
Vì \((x-\frac{7}{4})^2\geq 0, \forall x\in\mathbb{R}\Rightarrow D\geq 2.0-\frac{41}{8}=-\frac{41}{8}\)
Vậy \(D_{\min}=-\frac{41}{8}\Leftrightarrow x=\frac{7}{4}\)
--------------------
\(E=3x^2+2x=3(x^2+\frac{2}{3})=3[x^2+2.\frac{1}{3}x+(\frac{1}{3})^2]-\frac{1}{3}\)
\(=3(x+\frac{1}{3})^2-\frac{1}{3}\)
Vì \((x+\frac{1}{3})^2\geq 0, \forall x\in\mathbb{R}\Rightarrow E\geq 3. 0-\frac{1}{3}=\frac{-1}{3}\)
Vậy \(E_{\min}=\frac{-1}{3}\Leftrightarrow x=\frac{-1}{3}\)
b,B=x.(x-6)
=>B=x2-6x
=>(x2-2.x.3+9)-9
=>(x-3)2-9 >hoặc= -9 (vì (x-3)2> hoặc = 0 )
Vậy GTNN của B =-9 khi x=3
t*** mình nhé
Jup cauA