K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2018

A = (x^2-12x+36) - 2

   = (x-6)^2 - 2

   >= -2

Dấu "=" xảy ra <=> x-6=0 <=> x=6

Vậy GTNN của A = -2 <=> x=6

Tk mk nha

2 tháng 9 2016

\(A=x^2-12x+18\)

\(A=x^2-2.x.6+36-36+18\)

\(A=\left(x-6\right)^2-18\)

Vì \(\left(x-6\right)^2\ge0\)

Nên \(\left(x-6\right)^2-18\ge-18\)

Vậy \(A_{MIN}=-18\Leftrightarrow x-6=0\Leftrightarrow x=6\)

2 tháng 9 2016

Ta có : \(A=x^2-12x+18\)

                 \(=x^2-2.x.6+6^2-18\)

                  \(=\left(x-6\right)^2-18\)

Có : \(\left(x-6\right)^2\ge0\)

\(\Rightarrow\left(x-6\right)^2-18\ge-18\)

Dấu " = " xảy ra khi \(x-6=0\)

                                   \(x=6\)

Vậy \(MIN_A=-18\) khi \(x=6\)

14 tháng 2 2018

x^2 - 2xy + 6y^2 - 12x + 2y +45 
= x^2 - 2x(y+6) + (y+6)^2 - (y+6)^2 + 6y^2 +2y + 45 
= (x - y - 6)^2 - y^2 - 12y - 36 + 6y^2 + 2y + 45 
= (x - y - 6)^2 + 5y^2 - 10y + 9 
= (x - y - 6)^2 + 5.(y^2 - 2y +1) + 4 
= (x - y - 6)^2 + 5.(y-1)^2 + 4 
=>> MIN = 4 khi (x;y) = {(7;1)}

14 tháng 2 2018

\(A=x^2-2xy+6y^2-12x+2y+45\)

\(=x^2+y^2+36-2xy-12x+12y+5y^2-10y+5+4\)

\(=\left(x-y-6\right)^2+5\left(y-1\right)^2+4\ge4\)

GTNN A = 4 Khi: \(\hept{\begin{cases}y-1=0\\x-y-6=0\end{cases}\Rightarrow\hept{\begin{cases}y=1\\x=7\end{cases}}}\)

9 tháng 5 2019

x2 là x2 phải ko bn ? 

mk giải nha 

A=\(\frac{x^2-1}{x^2+1}=\frac{x^2+1-2}{x^2+1}=1-\frac{2}{x^2+1}\)

Để A đạt GTNN thì \(\frac{2}{x^2+1}\)đạt GTLN khi x2+1 đạt GTNN

mà \(x^2+1\ge1\)với mọi x (dấu = xảy ra khi x=0)

=> x2+1 đạt GTNN là 1 khi x=0

Vậy A đạt GTNN làA= 1-\(\frac{2}{0^2+1}\)=1-2=-1    khi x=0

9 tháng 5 2019

Cách khác(không chắc):

A=\(\frac{x^2-1}{x^2+1}\)

Ta có x2+1\(\ge\)1 với mọi x và x2-1\(\ge\)-1 với mọi x

A đạt giá trị nhỏ nhất <=>x2-1 nhỏ nhất 

Hay để A đạt giá trị nhỏ nhất thì x2-1=-1<=>x=0(thỏa mãn A xác định)

Vậy GTNN của A=-1<=>x=0

6 tháng 2 2022

+) \(A=\left(x-3\right)^2+2\)

Vì \(\left(x-3\right)^2\)≥0 ∀x

\(A\)≥2 ∀x

Min A=2⇔\(x=3\)

+) \(B=11-x^2\)

Câu này chỉ tìm được max thôi nha

6 tháng 2 2022

\(A=\left(x-3\right)^2+2\)

Vì \(\left(x-3\right)^2\ge0\)

\(\Rightarrow\left(x-3\right)^2+2\ge2\)

Vậy GTNN của A là 2 khi x = 3

 

\(A=x^2+x+5=\left(x+\dfrac{1}{2}\right)^2+\dfrac{19}{4}\ge\dfrac{19}{4}\)

Dấu "=" xảy ra khi \(x=-\dfrac{1}{2}\)

\(B=x^2-3x+2=\left(x-\dfrac{3}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)

Dấu "=" xảy ra khi \(x=\dfrac{3}{2}\)

30 tháng 8 2021

a) \(A=x^2-4x+1=\left(x-2\right)^2-3\ge-3\)

\(minA=-3\Leftrightarrow x=2\)

b) \(B=-x^2-8x+5=-\left(x+4\right)^2+21\le21\)

\(maxB=21\Leftrightarrow x=-4\)

c) \(C=2x^2-8x+19=2\left(x-2\right)^2+11\ge11\)

\(minC=11\Leftrightarrow x=2\)

d) \(D=-3x^2-6x+1=-3\left(x+1\right)^2+4\le4\)

\(maxD=4\Leftrightarrow x=-1\)

30 tháng 8 2021

a) A = (x-2)^2 - 3 >= -3

--> A nhỏ nhất bằng -3

 <=> x = 2

19 tháng 5 2016

\(P\left(x\right)=6x^2-12x-30=6\left(x^2-2x-5\right)\)

\(P\left(x\right)=6\left(x^2-x-x+1-6\right)\)

\(=6\left[x\left(x-1\right)-\left(x-1\right)-6\right]\)

\(=6\left[\left(x-1\right)\left(x-1\right)-6\right]=6\left[\left(x-1\right)^2-6\right]=6\left(x-1\right)^2-36\)

\(6\left(x-1\right)^2\ge0\Rightarrow6\left(x-1\right)^2-36\ge36\)

=>GTNN của P(x) là -36

dấu "=" xảy ra <=> \(6\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)

Vậy...................

19 tháng 5 2016

P(x)=6x2 - 12x - 30

=6(x2-2x-5)

ta thấy:

..... tự làm nhé

dấu "="xảy ra khi x=1

vậy GTLN của P(x)=-36 khi x=1

5 tháng 7 2018

a) Ta có: \(A=4x^2-12x+15=\left(2x-3\right)^2+6\)

Vì \(\left(2x-3\right)^2\ge0\left(\forall x\in Z\right)\)

\(\Rightarrow A=\left(2x-3\right)^2+6\ge6\)

Dấu "=" xảy ra \(\Leftrightarrow2x-3=0\Leftrightarrow x=\frac{3}{2}\)

Vậy Amin = 6 khi và chỉ khi x = 3/2

b) \(B=x^2-x+1=x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}\)

                                    \(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu "=" xảy ra <=> x - 1/2 = 0 <=> x = 1/2

Vậy Bmin = 3/4 khi và chỉ khi x = 1/2

NV
19 tháng 5 2021

\(P=x^2-6x+9+2\)

\(P=\left(x-3\right)^2+2\)

Do \(\left(x-3\right)^2\ge0\) ;\(\forall x\)

\(\Rightarrow P\ge0+2\Rightarrow P\ge2\)

Vậy \(P_{min}=2\) khi \(x=3\)