K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) f(x) = 10x² - 7x - 5 = 10x² - 15x + 8x - 12 + 7 = 5x(2x-3) + 4(2x-3) + 7 
f(x) chia hết cho 2x-3 khi và chỉ khi 7 chia hết cho 2x-3, vì 7 là số nguyên tố, nên chi có các trường hợp: 
TH1: 2x-3 = -1 <=> x = 1 
TH2: 2x-3 = 1 <=> x = 2 
TH3: 2x-3 = -7 <=> x = -2 
TH4: 2x-3 = 7 <=> x = 5 
Vây có 4 giá trị nguyên của x là {-2, 1, 2, 5}

a) f(x) = 10x² - 7x - 5 = 10x² - 15x + 8x - 12 + 7 = 5x(2x-3) + 4(2x-3) + 7 
f(x) chia hết cho 2x-3 khi và chỉ khi 7 chia hết cho 2x-3, vì 7 là số nguyên tố, nên chi có các trường hợp: 
TH1: 2x-3 = -1 <=> x = 1 
TH2: 2x-3 = 1 <=> x = 2 
TH3: 2x-3 = -7 <=> x = -2 
TH4: 2x-3 = 7 <=> x = 5 
Vây có 4 giá trị nguyên của x là {-2, 1, 2, 5} 

b) g(x) = x³ - 4x² + 5x - 1 = x³ - 3x² - x² + 3x + 2x - 6 + 5 = x²(x-3) - x(x-3) + 2(x-3) + 5 
g(x) chia hết cho x-3 khi và chỉ khi 5 chia hết cho x-3 (5 là số nguyên tố nên chỉ xét các trường hợp) 
TH1: x-3 = -5 <=> x = -2 
TH2: x-3 = -1 <=> x = 2 
TH3: x-3 = 1 <=> x = 4 
TH4: x-3 = 5 <=> x = 8 
Vậy có giá trị nguyên của x thỏa là {-1, 2, 4, 8}

x^3+3x-5 chia hết cho x^2+2

=>x^3+2x+x-5 chia hết cho x^2+2

=>x-5 chia hết cho x^2+2

=>x^2-25 chia hết cho x^2+2

=>x^2+2-27 chia hết cho x^2+2

=>x^2+2 thuộc Ư(-27)

=>x^2+2 thuộc {3;9;27}

=>\(x\in\left\{1;-1;5;-5\right\}\)

AH
Akai Haruma
Giáo viên
1 tháng 5 2023

Lời giải:

a.

$A+B=(5x^2-7x+2)+(4x^2+3x-1)=9x^2-4x+1$
$A-B=(5x^2-7x+2)-(4x^2+3x-1)=x^2-10x+3$

b. 

$A(x)=2x^2-x+m=x(2x-5)+4x+m=x(2x-5)+2(2x-5)+m+10$

$=B(x)(x+2)+m+10$

Để $A(x)\vdots B(x)$ thì $m+10=0\Leftrightarrow m=-10$

22 tháng 10 2021

Để `A(x)\vdotsB(x)` thì `2x^3-x^2+2x^2-x-3x+3/2+m-3/2\vdots2x-1`

`<=>m-3/2=0`

`<=>m=3/2` 

Vậy `m=3/2`

 
18 tháng 4 2023

hơi khó nhìn 😥

8 tháng 4 2020

chị học nhanh vĩa 

dạy em học với