Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
X^2 + 2( m+1) X - m+3 =0
ta có
( m + 1 ) + m-3 = 0
m^2 + 3m -2 = 0
m1 = \(\frac{-3\sqrt{17}}{2}\)
m2 = \(\frac{-3-\sqrt{17}}{2}\)
Lời giải:
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\left [\frac{9}{1-(xy+yz+xz)}+\frac{1}{4xyz}\right]\left [1-(xy+yz+xz)+9xyz\right ]\geq (3+\frac{3}{2})^2=\frac{81}{4}\)
\(\Rightarrow P\geq \frac{81}{4[1-(xy+yz+xz)+9xyz]}\) $(1)$
Áp dụng BĐT Am-Gm: \(xy+yz+xz=(x+y+z)(xy+yz+xz)\geq 9xyz\)
\(\Rightarrow 1-(xy+yz+xz)+9xyz\leq 1\) $(2)$
Từ \((1),(2)\Rightarrow P\geq \frac{81}{4}\)
Vậy \(P_{\min}=\frac{81}{4}\Leftrightarrow (x,y,z)=\left(\frac{1}{3},\frac{1}{3},\frac{1}{3}\right)\)
\(f\left(x\right)=2\left(x^2-6x+9\right)=2\left(x-3\right)^2\)
\(\Rightarrow f\left(x\right)=0\) khi \(x=3\)
\(f\left(x\right)>0\) khi \(x\ne3\)
Vậy:
1. Là phát biểu sai
2. Là phát biểu đúng
3. Là phát biểu đúng
\(f\left(x\right)=x+\frac{3}{x}=\left(\frac{3x}{4}+\frac{3}{x}\right)+\frac{x}{4}\)
\(\ge2\sqrt{\frac{3x}{4}.\frac{3}{x}}+\frac{2}{4}=3+\frac{1}{2}=\frac{7}{2}\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x=2\\\frac{3x}{4}=\frac{3}{x}\end{cases}\Leftrightarrow}x=2\)
Vậy min f(x) = 7/2 đạt tại x =2
\(y=\frac{\sqrt{2017\left(x-2015\right)}}{\sqrt{2017}\left(x+2\right)}+\frac{\sqrt{2016\left(x-2016\right)}}{\sqrt{2016}x}\le\frac{1}{2\sqrt{2017}}+\frac{1}{2\sqrt{2016}}\)
"=" \(\Leftrightarrow\)\(x=4032\)
\(F=\frac{x}{x^2+2}\)
với x > 0, áp dụng bđt Cauchy ta có :
\(x^2+2\ge2\sqrt{x^2+2}=2x\sqrt{2}\)
=> \(\frac{1}{x^2+2}\le\frac{1}{2x\sqrt{2}}\)
=> \(\frac{x}{x^2+2}\le\frac{1}{2\sqrt{2}}\)( x > 0 nên khi nhân vào cả hai vế bđt giữ chiều )
hay \(F\le\frac{1}{2\sqrt{2}}\)
đẳng thức xảy ra khi \(x=\sqrt{2}\)
vậy maxF = \(\frac{1}{2\sqrt{2}}\), đạt được khi \(x=\sqrt{2}\)
1.
ĐKXĐ: \(1-x^2>0\Leftrightarrow0< x< 1\)
Pt tương đương:
\(x=5-2m\)
Pt có nghiệm khi và chỉ khi:
\(0< 5-2m< 1\) \(\Leftrightarrow2< m< \dfrac{5}{2}\)
2.
\(M=\dfrac{\dfrac{sina.cosa}{cos^2a}}{\dfrac{sin^2a}{cos^2a}-\dfrac{cos^2a}{cos^2a}}=\dfrac{tana}{tan^2a-1}=\dfrac{\left(-\dfrac{2}{3}\right)}{\left(-\dfrac{2}{3}\right)^2-1}=-\dfrac{6}{5}\)