Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ giả thiếu suy ra: (x2+y2)2-4(x2+y2)+3=-x2 =<0
Do đó: A2-4A+3 =<0
<=> (A-1)(A-3) =<0
<=> 1 =<A=<3
Vậy MinA=1 <=> x=0; y=\(\pm\)1
MaxA=3 <=> x=0; y=\(\pm\sqrt{3}\)
Giả thiết cho ta \(\left(x^2+y^2\right)^2+x^2+2y^2=3.\) Đặt \(t=x^2+y^2\) (ta có \(t\ge0\)).
Giá trị lớn nhất: Từ giả thiết ta suy ra \(t^2+t=3-y^2\le3\to\left(t+\frac{1}{2}\right)^2\le3+\frac{1}{4}\to t\le\frac{\sqrt{13}-1}{2}\)
Dấu bằng xảy ra khi và chỉ \(y=0,x=\pm\sqrt{\frac{\sqrt{13}-1}{2}}\). Vậy giá trị lớn nhất của \(B=t\) là \(\frac{\sqrt{13}-1}{2}.\)
Giá trị bé nhất: Từ giả thiết \(t^2+2t=3+x^2\ge3\to\left(t+1\right)^2\ge4\to t+1\ge2\to t\ge1.\) Dấu bằng xảy ra khi \(x=0,y=\pm1\). Vậy giá trị bé nhất của \(B=t\) là \(1.\)