\(M=x\left(15+\sqrt{17-x^2}\right)\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2017

1/ Tìm Max. Ta có

\(\frac{M}{2}=\frac{15x}{2}+\frac{x\sqrt{17-x^2}}{2}\)

\(=-\left(\frac{x^2}{16}-\frac{2x\sqrt{17-x^2}}{4}+17-x^2\right)-15\left(\frac{x^2}{16}-\frac{2x}{4}+1\right)+32\)

\(=-\left(\frac{x}{4}-\sqrt{17-x^2}\right)^2-15\left(\frac{x}{4}-1\right)^2+32\le32\)

\(\Rightarrow M\le64\)

\(\Rightarrow\)GTLN là M = 64 đạt được khi x = 4

Tìm Min. Ta có

\(\frac{M}{2}=\frac{15x}{2}+\frac{x\sqrt{17-x^2}}{2}\)

\(=\left(\frac{x^2}{16}+\frac{2x\sqrt{17-x^2}}{4}+17-x^2\right)+15\left(\frac{x}{16}+\frac{2x}{4}+1\right)-32\)

\(=\left(\frac{x}{4}+\sqrt{17-x^2}\right)^2+15\left(\frac{x}{4}+1\right)^2-32\ge-32\)

\(\Rightarrow M\ge-64\)

Vậy GTNN là M = - 64 đạt được khi x = - 4

8 tháng 1 2017

x = 8 đó mình chỉ đoán thôi 

16 tháng 5 2019

2. \(P=x^2-x\sqrt{3}+1=\left(x^2-x\sqrt{3}+\frac{3}{4}\right)+\frac{1}{4}=\left(x-\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)

Dấu '=' xảy ra khi \(x=\frac{\sqrt{3}}{2}\)

Vây \(P_{min}=\frac{1}{4}\)khi \(x=\frac{\sqrt{3}}{2}\)

3. \(Y=\frac{x}{\left(x+2011\right)^2}\le\frac{x}{4x.2011}=\frac{1}{8044}\)

Dấu '=' xảy ra khi \(x=2011\)

Vây \(Y_{max}=\frac{1}{8044}\)khi \(x=2011\)

4. \(Q=\frac{1}{x-\sqrt{x}+2}=\frac{1}{\left(x-\sqrt{x}+\frac{1}{4}\right)+\frac{7}{4}}=\frac{1}{\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{7}{4}}\le\frac{4}{7}\)

Dấu '=' xảy ra khi \(x=\frac{1}{4}\) 

Vậy \(Q_{max}=\frac{4}{7}\)khi \(x=\frac{1}{4}\)

16 tháng 5 2019

Làm như thế nào ra \(\frac{x}{4x.2011}\)vậy bạn?

24 tháng 7 2017

a) A = \(\sqrt{-x^2+x+\dfrac{3}{4}}=\sqrt{1-\left(x-\dfrac{1}{2}\right)^2}\le\sqrt{1}=1\) (dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{1}{2}\))

Vậy max A = 1 (khi và chỉ khi x = \(\dfrac{1}{2}\))

b) B = \(\sqrt{\left(2x^2-x-1\right)^2+9}\ge\sqrt{9}=3\) (dấu "=" xảy ra \(\Leftrightarrow2x^2-x-1=0\)

\(\Leftrightarrow\left(2x+1\right)\left(x-1\right)=0\)

\(\Leftrightarrow x=1;x=-\dfrac{1}{2}\)).

Vậy min B = 3 (khi và chỉ khi x = 1 hoặc x = \(-\dfrac{1}{2}\))

c) C = \(\left|5x-2\right|+\left|5x\right|=\left|2-5x\right|+\left|5x\right|\);

C \(\ge\left|2-5x+5x\right|=\left|2\right|=2\) (dấu "=" xảy ra \(\Leftrightarrow\left(2-5x\right).5x\ge0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\2-5x\ge0\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x\le0\\2-5x\le0\end{matrix}\right.\)

\(\Leftrightarrow0\le x\le\dfrac{2}{5}\)).

Vậy min C = 2 (khi và chỉ khi \(0\le x\le\dfrac{2}{5}\))

21 tháng 10 2020

Giúp mình với mình đang cần gấp. Thk you các pạn

18 tháng 1 2017

Ở giữa là nhân hay cộng vậy bạn.

Nếu là nhân thì min bằng 0 vì đây là tích 2 số không âm.

Nếu là cộng: \(A=\left|x+2011\right|+\left|2012-x\right|\ge\left|2011+2012\right|=4023\)

và đẳng thức xảy ra, chẳng hạn khi \(x=2012\)

19 tháng 1 2017

Đề không rõ ràng này tốt nhất thôi A à.

tý nữa lại sủa, tẹo nữa keo nhầm, kết luận làm được rồi không phải giải nữa.

A mới đưa ra được (.);(+) còn chia(/) và (-) nữa 

AH
Akai Haruma
Giáo viên
9 tháng 8 2021

1.

Ta có: \(P=\frac{x+16}{\sqrt{x}+3}=\frac{\sqrt{x}(\sqrt{x}+3)-3(\sqrt{x}+3)+25}{\sqrt{x}+3}\)

\(=\frac{(\sqrt{x}-3)(\sqrt{x}+3)+25}{\sqrt{x}+3}=\sqrt{x}-3+\frac{25}{\sqrt{x}+3}=(\sqrt{x}+3)+\frac{25}{\sqrt{x}+3}-6\)

\(\geq 2\sqrt{(\sqrt{x}+3).\frac{25}{\sqrt{x}+3}}-6\) (áp dụng BĐT AM-GM)

\(P\geq 2\sqrt{25}-6=4\)

Vậy $P_{\min}=4$. Giá trị này đạt tại $\sqrt{x}+3=5\Leftrightarrow x=4$

AH
Akai Haruma
Giáo viên
9 tháng 8 2021

2.

\(P=\frac{\sqrt{x}}{(\sqrt{x}+2)^2}=\frac{\sqrt{x}}{x+4+4\sqrt{x}}\)

Áp dụng BĐT AM-GM:

$x+4\geq 4\sqrt{x}\Rightarrow x+4+4\sqrt{x}\geq 8\sqrt{x}$

$\Rightarrow P\leq \frac{\sqrt{x}}{8\sqrt{x}}=\frac{1}{8}$

Vậy $P_{\max}=\frac{1}{8}$. Giá trị này đạt tại $x=4$

29 tháng 1 2020

\(M=\sqrt{x}-x\)

\(=\frac{1}{4}-\left(x-\sqrt{x}+\frac{1}{4}\right)\)

\(=\frac{1}{4}-\left(\sqrt{x}-\frac{1}{2}\right)^2\le\frac{1}{4}\forall x\ge0\)

Dấu "=" xảy ra \(\Leftrightarrow\left(\sqrt{x}-\frac{1}{2}\right)^2=0\Leftrightarrow\sqrt{x}=\frac{1}{2}\Leftrightarrow x=\frac{1}{4}\)