K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2018

Ta có: \(B=\frac{x^4+1}{x^4+2x^2+1}=\frac{x^4+2x^2+1-2x^2-2+2}{x^4+2x^2+1}\)

\(=\frac{\left(x^2+1\right)^2-2\left(x^2+1\right)+2}{\left(x^2+1\right)^2}=1-\frac{2\left(x^2+1\right)}{\left(x^2+1\right)^2}+\frac{2}{\left(x^2+1\right)^2}\)

\(=1+2\left[\frac{1}{\left(x^2+1\right)^2}-2\cdot\frac{1}{x^2+1}\cdot\frac{1}{2}+\frac{1}{4}-\frac{1}{4}\right]\)

\(=1+2\left(\frac{1}{x^2+1}-\frac{1}{2}\right)^2-\frac{1}{2}=\frac{1}{2}+2\left(\frac{1}{x^2+1}-\frac{1}{2}\right)^2\)

Vì \(2\left(\frac{1}{x^2+1}-\frac{1}{2}\right)^2\ge0\Rightarrow B=\frac{1}{2}+2\left(\frac{1}{x^2+1}-\frac{1}{2}\right)^2\ge\frac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow\frac{1}{x^2+1}-\frac{1}{2}=0\Leftrightarrow\frac{1}{x^2+1}=\frac{1}{2}\Leftrightarrow x^2+1=2\Leftrightarrow x^2=1\Leftrightarrow x=\pm1\)

Vậy \(Bmin=\frac{1}{2}\Leftrightarrow x=\pm1\)

5 tháng 2 2021

1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4

vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)nhỏ hơn hoặc bằng 0 với mọi x

vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4

5 tháng 2 2021

các bài giá trị  nhỏ nhất còn lại làm tương tự bạn nhé

chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được

30 tháng 6 2021

\(1.\)

\(-17-\left(x-3\right)^2\)

Ta có: \(\left(x-3\right)^2\ge0\)với \(\forall x\)

\(\Leftrightarrow-\left(x-3\right)^2\le0\)với \(\forall x\)

\(\Leftrightarrow17-\left(x-3\right)^2\le17\)với \(\forall x\)

Dấu '' = '' xảy ra khi: 

\(\left(x-3\right)^2=0\)

\(\Leftrightarrow x-3=0\)

\(\Leftrightarrow x=3\)

Vậy \(Max=-17\)khi \(x=3\)

30 tháng 6 2021

\(2.\)

\(A=x\left(x+1\right)+\frac{3}{2}\)

\(A=x^2+x+\frac{3}{2}\)

\(A=\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)

\(\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)

\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)

Vậy \(Max=\frac{5}{4}\)khi \(x=\frac{-1}{2}\)

28 tháng 7 2016

a) Giá trị lớn nhất:

\(A=2x-3x^2-4=-3\left(x^2-\frac{2}{3}x+\frac{4}{3}\right)=-3\left[x^2-2.x.\frac{1}{3}+\left(\frac{1}{3}\right)^2+\frac{35}{9}\right]=-3\left(x-\frac{1}{3}^2\right)-\frac{35}{3}\)

Vì \(\left(x-\frac{1}{3}\right)^2\ge0\left(x\in R\right)\)

Nên \(-3\left(x-\frac{1}{3}\right)^2\le0\left(x\in R\right)\)

do đó \(-3\left(x-\frac{1}{3}\right)^2-\frac{35}{3}\le-\frac{35}{3}\left(x\in R\right)\)

Vậy \(Max_A=-\frac{35}{3}\)khi \(x-\frac{1}{3}=0\Rightarrow x=\frac{1}{3}\)

\(B=-x^2-4x=-\left(x^2+4x\right)=-\left(x^2+2.x.2+2^2-2^2\right)=-\left(x+2\right)^2+4\)

Vì \(\left(x+2\right)^2\ge0\left(x\in R\right)\)

nên \(-\left(x+2\right)^2\le0\left(x\in R\right)\)

do đó \(-\left(x+2\right)^2+4\le4\left(x\in R\right)\)

Vậy \(Max_B=4\)khi \(x+2=0\Rightarrow x=-2\)

b) Giá trị nhỏ nhất 

\(A=x^2-2x-1=x^2-2.x.+1-2=\left(x-1\right)^2-2\)

Vì \(\left(x-1\right)^2\ge0\left(x\in R\right)\)

nên \(\left(x-1\right)^2-2\ge-2\left(x\in R\right)\)

Vậy \(Min_A=-2\)khi \(x-1=0\Rightarrow x=1\)

\(B=4^2+4x+5=\left(2x\right)^2+2.2x.1+1+4=\left(2x+1\right)^2+4\)

vì \(\left(2x+1\right)^2\ge0\left(x\in R\right)\)

nên \(\left(2x+1\right)^2+4\ge4\left(x\in R\right)\)

Vậy \(Min_B=4\)khi \(2x+1=0\Rightarrow x=-\frac{1}{2}\)

4 tháng 7 2020

Bài làm:

#Tìm Max của biểu thức:

\(A=\frac{3-4x}{x^2+1}=\frac{4\left(x^2+1\right)-\left(4x^2+4x+1\right)}{x^2+1}=4-\frac{\left(2x+1\right)^2}{x^2+1}\)

Mà \(\hept{\begin{cases}\left(2x+1\right)^2\ge0\\x^2+1>0\end{cases}\left(\forall x\right)\Rightarrow}-\frac{\left(2x+1\right)^2}{x^2+1}\le0\left(\forall x\right)\)

\(\Rightarrow A\le4\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left(2x+1\right)^2=0\Rightarrow x=-\frac{1}{2}\)

Vậy \(Max\left(A\right)=4\Leftrightarrow x=-\frac{1}{2}\)

#Tìm Max và Min của B:

Tìm Min

\(B=\frac{2x}{x^2+1}=\frac{\left(x^2+2x+1\right)-\left(x^2+1\right)}{x^2+1}=\frac{\left(x+1\right)^2}{x^2+1}-1\)

Mà \(\hept{\begin{cases}\left(x+1\right)^2\ge0\\x^2+1>0\end{cases}\left(\forall x\right)\Rightarrow}\frac{\left(x+1\right)^2}{x^2+1}\ge0\left(\forall x\right)\)

\(\Rightarrow B\ge-1\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left(x+1\right)^2\ge0\Rightarrow x=-1\)

Vậy \(Min\left(B\right)=-1\Leftrightarrow x=-1\)

Tìm Max

\(B=\frac{2x}{x^2+1}=\frac{x^2+1-\left(x^2-2x+1\right)}{x^2+1}=1-\frac{\left(x-1\right)^2}{x^2+1}\)

Mà \(\hept{\begin{cases}\left(x-1\right)^2\ge0\\x^2+1>0\end{cases}}\left(\forall x\right)\Rightarrow-\frac{\left(x-1\right)^2}{x^2+1}\le0\left(\forall x\right)\)

\(\Rightarrow B\le1\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left(x-1\right)^2=0\Rightarrow x=1\)

Vậy \(Max\left(B\right)=1\Leftrightarrow x=1\)

Sao dạo này nhìu bạn đăng mấy câu như vậy lên thế nhỉ?

20 tháng 7 2019

\(\text{a)}\left(2x-1\right)^2+x+2\)

\(=4x^2-4x+1+x+2\)

\(=4x^2-3x+3\)

\(=\left(4x^2-3x+\frac{9}{16}\right)+\frac{39}{16}\)

\(=\left(2x+\frac{3}{4}\right)^2+\frac{39}{16}\)

\(\text{Vì}\left(2x-\frac{3}{4}\right)^2\ge0\)

\(\text{nên }\left(2x-\frac{3}{4}\right)^2+\frac{39}{16}\ge\frac{39}{16}\)

Vậy \(GTNN=\frac{39}{16}\),dấu bằng xảy ra khi \(x=\frac{3}{8}\)

\(\text{b)}4-x^2+2x\)

\(=\left(-x^2+2x-1\right)+5\)

\(=-\left(x^2-2x+1\right)+5\)

\(=-\left(x-1\right)^2+5\)

\(\text{Vì }-\left(x-1\right)^2\le0\)

\(\text{nên }-\left(x-1\right)^2+5\le5\)

Vậy \(GTLN=5\), dấu bằng xảy ra khi \(x=1\)

\(\text{c)}4x-x^2\)

\(=\left(-x^2+4x-4\right)+4\)

\(=-\left(x^2-4x+4\right)-4\)

\(=-\left(x-4\right)^2-4\)

\(\text{Vì }-\left(x-4\right)^2\le0\)

\(\text{nên }-\left(x-4\right)^2-4\le-4\)

Vậy \(GTLN=-4\), dấu  bằng xảy ra khi \(x=4\)

\(a,\left(2x-1\right)^2+\left(x+2\right)=4x^2-4x+1+x+2\)

\(=4x^2-3x+3\)

\(=4x^2-2.2.\frac{3}{4}x+\left(\frac{3}{4}\right)^2-\left(\frac{3}{4}\right)^2+3\)

\(=\left(2x-\frac{3}{4}\right)^2+\frac{39}{16}\ge\frac{39}{16}\)

Dấu bằng xảy ra khi \(2x-\frac{3}{4}=0\Rightarrow x=\frac{3}{8}\)

Vậy \(x=\frac{3}{8}\)thì biểu thức đạt giá trị nhỏ nhất là \(\frac{39}{16}\)

\(b,4-x^2+2x=-\left(x^2-2x-4\right)\)

\(=-\left(\left(x-2\right)^2-8\right)\)

\(\left(x-2\right)^2-8\ge-8\)

\(-\left(\left(x-2\right)^2-8\right)\le8\)

Dấu bằng xảy ra khi \(x-2=0\Rightarrow x=2\)

Vậy \(x=2\)thì biểu thức đạt giá trị lớn nhất là 8 

\(c,4x-x^2=-\left(x^2-4x\right)\)

\(=-\left(\left(x-2\right)^2-4\right)\)

\(\left(x-2\right)^2-4\ge-4\)

\(\Rightarrow-\left(\left(x-2\right)^2-4\right)\le4\)

Dấu bằng xảy ra khi \(x-2=0\Rightarrow x=2\)

Vậy giá trị lớn nhất của biểu thức là 4 khi x = 2

11 tháng 7 2016

Cho x2_60x+900=0

Suy ra:x2_2.x.30+302=0

(x-30)2=0

suy ra x-30=0

vậy x=30

5 tháng 2 2021

undefined

5 tháng 2 2021

Giups mik vs

lolang

9 tháng 3 2020

a) \(A=4x^2-12x+100=\left(2x\right)^2-12x+3^2+91=\left(2x-3\right)^2+91\)

Ta có: \(\left(2x-3\right)^2\ge0\forall x\inℤ\)

\(\Rightarrow\left(2x-3\right)^2+91\ge91\)

hay A \(\ge91\)

Dấu "=" xảy ra <=> \(\left(2x-3\right)^2=0\)

<=> 2x-3=0

<=> 2x=3

<=> \(x=\frac{3}{2}\)

Vậy Min A=91 đạt được khi \(x=\frac{3}{2}\)

b) \(B=-x^2-x+1=-\left(x^2+x-1\right)=-\left(x^2+x+\frac{1}{4}-\frac{5}{4}\right)=-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)

Ta có: \(-\left(x+\frac{1}{2}\right)^2\le0\forall x\)

\(\Rightarrow-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\le\frac{5}{4}\) hay B\(\le\frac{5}{4}\)

Dấu "=" \(\Leftrightarrow-\left(x+\frac{1}{2}\right)^2=0\)

\(\Leftrightarrow x+\frac{1}{2}=0\)

\(\Leftrightarrow x=\frac{-1}{2}\)

Vậy Max B=\(\frac{5}{4}\)đạt được khi \(x=\frac{-1}{2}\)

9 tháng 3 2020

\(C=2x^2+2xy+y^2-2x+2y+2\)

\(C=x^2+2x\left(y-1\right)+\left(y-1\right)^2+x^2+1\)

\(\Leftrightarrow C=\left(x+y-1\right)^2+x^2+1\)

Ta có: 

\(\hept{\begin{cases}\left(x+y-1\right)^2\ge0\forall x;y\inℤ\\x^2\ge0\forall x\inℤ\end{cases}}\)

\(\Leftrightarrow\left(x+y-1\right)^2+x^2+1\ge1\)

hay C\(\ge\)1

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x+y-1\right)^2=0\\x^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=1\\x=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=1\\x=0\end{cases}}}\)

Vậy Min C=1 đạt được khi y=1 và x=0