K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2016

để A có GTLN thì 2(x-1)2 + 3 phải bé nhất

mà 2(x-1)2 luôn > hoặc = 0 

=> A có GTLN thì 2(x-1)2 + 3 = 3 

=> x=1

GTLN of A là 1/3 khi và chỉ khi x = 1

để B có GTLN thì 17-x > 0 và bé nhất

=> 17-x = 1

=> x = 16

GTLN của B = 1 khi và chỉ khi x=16

16 tháng 12 2016

!17-x!  nhỏ nhất =>!A! lớn nhất 

\(\hept{\begin{cases}x\in Z\\x\ne17\end{cases}\Rightarrow!17-x!\ge1}\) 

Amax=13 khi 17-x=1 hay x=16

Amin=-13 khi 17-x=-1hay x=18

8 tháng 5 2017

min = 13/17

23 tháng 9 2016

ta có \(\frac{1+5y}{5x}\)=\(\frac{1+7y}{4x}\)

=>      4x(1+5y)=5x(1+7y)

=>      4x+20xy=5x+35xy

=>      4x-5x    =35xy-20xy

=>      -x          =15xy

=>      -1          =15y

=>      y           =\(\frac{-1}{15}\)

có y roi thi có thể dễ dàng tìm được x=-2

5 tháng 6 2016

Đáy lớn là

26 + 8 = 34 M

chIỀU CAO là

26 - 6 = 20 m

Diện tích thửa ruộng là

{ 34 + 26 } x 20 : 2 = 800 m2

Đáp số 800 m2

5 tháng 6 2016

1.Để H đạt GTLN

=>|8x+16|+1 đạt giá trị dương nhỏ nhất

=>|8x+16|+1=1

=>MaxH=1

Dấu "=" xảy ra khi x=-2

Vậy...

27 tháng 11 2016

ta thấy: 2007 lớn hơn hoặc bằng 0

\(\left(1-2.x\right)^2\) lớn hơn hoặc bằng 0

dấu = xảy ra khi:a.b lớn hơn hoặc bằng 0

2007+\( \left(1-2.x\right)^2\) >hoặc =2007

dấu = xảy ra khi:

N=2007 và \(\left(1-2.x\right)^2\)  = 0

                1-2.x=0

                   2.x=1

                     x=\(\frac{1}{2}\) 

vậy N có giá trị lớn nhất là 2007 khi x=\(\frac{1}{2}\)

27 tháng 11 2016

GTLN của N=\(\frac{1}{2007}\)khi x=\(\frac{1}{2}\)

k mik nha

20 tháng 10 2017

\(A=\left|x+\frac{1}{2}\right|-1\)

ta có \(\left|x+\frac{1}{2}\right|\ge0\forall x\in R\)

\(\Rightarrow\left|x+\frac{1}{2}\right|-1\ge-1\forall x\in R\)

\(\Rightarrow A\ge-1\)

\(A=-1\Leftrightarrow x+\frac{1}{2}=0\Leftrightarrow x=-\frac{1}{2}\)

Vậy GTNN của A=-1 tại x=-1/2

20 tháng 10 2017

a) GTTNN là -1 

b) GTLN là -3

c) GTNN là -8

d) đang tìm .... 

trả lời giúp mk với 

7 tháng 8 2016

chịu , hổng bt lun ak

31 tháng 10 2017

a, Để A lớn nhất thì \(\left(x+\frac{1}{2}\right)^2\) phải nhỏ nhất

Mà \(\left(x+\frac{1}{2}\right)^2>=0\)

\(\Rightarrow\left(x+\frac{1}{2}\right)^2=0\)

\(\Rightarrow A=3,5-\left(x+\frac{1}{2}\right)^2\)có giá trị lớn nhất là 3,5

b, Để B đạt giá trị nhỏ nhất thì \(8-\left(x+\frac{1}{3}\right)^2\)phải lớn nhất

\(8-\left(x+\frac{1}{3}\right)^2\)lớn nhất thì \(\left(x+\frac{1}{3}\right)^2\)nhỏ nhất

tương tự câu a ta có \(\left(x+\frac{1}{3}\right)^2=0\Rightarrow\)\(8-\left(x+\frac{1}{3}\right)^2=8\)

\(\Rightarrow B=\frac{3}{8-\left(x+\frac{1}{3}\right)^2}\)đạt giá trị nhỏ nhất là \(\frac{3}{8}\)

31 tháng 10 2017

đi mà tra goole