Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/a) Ta có: \(A=x^4+\left(y-2\right)^2-8\ge-8\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=0\\y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\y=2\end{cases}}\)
Vậy GTNN của A = -8 khi x=0, y=2.
b) Ta có: \(B=|x-3|+|x-7|\)
\(=|x-3|+|7-x|\ge|x-3+7-x|=4\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x\ge3\\x\le7\end{cases}}\Rightarrow3\le x\le7\)
Vậy GTNN của B = 4 khi \(3\le x\le7\)
2/ a) Ta có: \(xy+3x-7y=21\Rightarrow xy+3x-7y-21=0\)
\(\Rightarrow x\left(y+3\right)-7\left(y+3\right)=0\Rightarrow\left(x-7\right)\left(y+3\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=7\\y=-3\end{cases}}\)
b) Ta có: \(\frac{x+3}{y+5}=\frac{3}{5}\)và \(x+y=16\)
Áp dụng tính chất bằng nhau của dãy tỉ số, ta có:
\(\frac{x+3}{y+5}=\frac{3}{5}\Rightarrow\frac{x+3}{3}=\frac{y+5}{5}=\frac{x+y+8}{8}=\frac{16+8}{8}=\frac{24}{8}=3\)
\(\Rightarrow\hept{\begin{cases}\frac{x+3}{3}=3\Rightarrow x+3=9\Rightarrow x=6\\\frac{y+5}{5}=3\Rightarrow y+5=15\Rightarrow y=10\end{cases}}\)
Bài 3: đề không rõ.
Bài 1:\(a,A=x^4+\left(y-2\right)^2-8\)
Có \(x^4\ge0;\left(y-2\right)^2\ge0\)
\(\Rightarrow A\ge0+0-8=-8\)
Dấu "=" xảy ra khi \(MinA=-8\Leftrightarrow x=0;y=2\)
\(b,B=\left|x-3\right|+\left|x-7\right|\)
\(\Rightarrow B=\left|x-3\right|+\left|7-x\right|\)
\(\Rightarrow B\ge\left|x-3+7-x\right|\)
\(\Rightarrow B\ge\left|-10\right|=10\)
Dấu "=" xảy ra khi \(MinB=10\Leftrightarrow3\le x\le7\Rightarrow x\in\left(3;4;5;6;7\right)\)
Ta có \(|x-5|\ge0;\forall x\Rightarrow|x-5|+25\ge25;\forall x\Rightarrow A\ge25,\forall x\)
GTNN của A là 25 khi và chỉ khi x=5
\(\left(x-2\right)^2\ge0;\forall x\Rightarrow\left(x-2\right)^2-16\ge-16;\forall x\Rightarrow B\ge-16,\forall x\)
GTNN của B là -16 khi x=2
b) \(|x+3|\ge0;\forall x\Rightarrow-|x+3|-5\le-5;\forall x\Rightarrow C\le-5,\forall x\)
GTLN của C là -5 khi và chỉ khi x=-3
\(\left(x+1\right)^2\ge0;\forall x\Rightarrow-\left(x+1\right)^2\le0;\forall x\Rightarrow D\le14,\forall x\)
GTLN của D là 14 khi và chỉ khi x = -1
a, Tìm giá trị nhỏ nhất của biểu thức:
A = \(|x-5|+25\)
Để A nhỏ nhất \(\Rightarrow\)\(|x-5|+25\)nhỏ nhất
\(\Rightarrow\)\(|x-5|\)nhỏ nhất
Mà \(|x-5|\)\(\ge0\forall x\inℤ\)
\(\Rightarrow\) \(|x-5|\)\(=0\) (1)
Thay (1) vào A, ta có:
A = 0 + 25
A = 25
Vậy giá trị nhỏ nhất của A là 25
\(B=-16+\left(x-2\right)^2\)
Để B nhỏ nhất \(\Rightarrow\)\(-16+\left(x-2\right)^2\)nhỏ nhất
\(\Rightarrow\left(x-2\right)^2\)nhỏ nhất
Mà \(\left(x-2\right)^2\)\(\ge0\forall x\inℤ\)
\(\Rightarrow\left(x-2\right)^2\)\(=0\) (2)
Thay (2) vào B, ta có :
B = \(-16+0\)
B = \(-16\)
Vậy giá trị nhỏ nhất của B là -16
để A\(\in\)Z
=>5 chia hết x-2
=>x-2\(\in\){1,-1,5,-5}
=>x\(\in\){3,1,7,-3}
\(C=\frac{3x-19}{x-5}=\frac{3\left(x-5\right)-4}{x-5}=\frac{3\left(x-5\right)}{x-5}-\frac{4}{x-5}\in Z\)
=>4 chia hết x-5
=>x-5\(\in\){1,-1,2,-2,4,-4}
=>x\(\in\){6,4,7,3,9,1}
B tương tự nhé
a) muốn A đạt giá trị lớn nhất thì /x-5/ đạt giá trị nhỏ nhât
mà /x-5/ đạt giá trị nhỏ nhất bằng 0
suy ra giá trị lớn nhất của A là 1000 khi x=5
b) muốn B đạt giá trị nhỏ nhất t hì /y-3/ đạt già trị nhỏ nhất
mà /y-3/ đạt giá trị nhỏ nhất bằng 0
suy ra giá trị nhỏ nhất của B bằng 50 khi y=3
c) muốn C đạt giá trị nhỏ nhất thì /x-100/ và /y+200/ đạt giá trị nhỏ nhất
mà /x-100/ đạt giá trị nhỏ nhất bằng 0
/y+200/ đạt giá trị nhỏ nhất bằng 0
suy ra giá trị nhỏ nhất của C bằng -1 khi x=100 và y=-200
a) muốn A đạt giá trị lớn nhất thì /x-5/ đạt giá trị nhỏ nhât
mà /x-5/ đạt giá trị nhỏ nhất bằng 0
suy ra giá trị lớn nhất của A là 1000 khi x=5
b) muốn B đạt giá trị nhỏ nhất t hì /y-3/ đạt già trị nhỏ nhất
mà /y-3/ đạt giá trị nhỏ nhất bằng 0
suy ra giá trị nhỏ nhất của B bằng 50 khi y=3
c) muốn C đạt giá trị nhỏ nhất thì /x-100/ và /y+200/ đạt giá trị nhỏ nhất
mà /x-100/ đạt giá trị nhỏ nhất bằng 0
/y+200/ đạt giá trị nhỏ nhất bằng 0
suy ra giá trị nhỏ nhất của C bằng -1 khi x=100 và y=-200
Để \(\frac{2008}{x-1000}\)đạt giá trị lớn nhất
Thì \(x-1000\)đạt giá trị dương nhỏ nhất
Mà x nguyên\(=>x=1001\)
a) \(A=x^2-10x+5\)
\(A=x^2-10x+25-20\)
\(A=\left(x-5\right)^2-20\ge-20\)
Min A = -20 \(\Leftrightarrow x=5\)
b) \(B=3x^2-6x+11\)
\(B=3\left(x^2-2x+1\right)+8\)
\(B=3\left(x-1\right)^2+8\ge8\)
Min B = 8\(\Leftrightarrow x=1\)
a) \(A=x^2-10x+5=\left(x^2-10x+25\right)-20\)
\(=\left(x-5\right)^2-20\ge-20\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left(x-5\right)^2=0\Rightarrow x=5\)
Vậy \(Min_A=-20\Leftrightarrow x=5\)
b) \(B=3x^2-6x+11=3\left(x^2-2x+1\right)+8\)
\(=3\left(x-1\right)^2+8\ge8\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left(x-1\right)^2=0\Rightarrow x=1\)
Vậy \(Min_B=8\Leftrightarrow x=1\)
c) \(C=8x^2+10x-30=8\left(x^2-\frac{5}{4}x+\frac{25}{64}\right)-\frac{265}{8}\)
\(=8\left(x-\frac{5}{8}\right)^2-\frac{265}{8}\ge-\frac{265}{8}\)
Dấu "=" xảy ra khi: \(\left(x-\frac{5}{8}\right)^2=0\Rightarrow x=\frac{5}{8}\)
Vậy \(Min_C=-\frac{265}{8}\Leftrightarrow x=\frac{5}{8}\)