K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2020

a) \(A=x^2-10x+5\)

\(A=x^2-10x+25-20\)

\(A=\left(x-5\right)^2-20\ge-20\)

Min A = -20 \(\Leftrightarrow x=5\)

b) \(B=3x^2-6x+11\)

\(B=3\left(x^2-2x+1\right)+8\)

\(B=3\left(x-1\right)^2+8\ge8\)

Min B = 8\(\Leftrightarrow x=1\)

19 tháng 8 2020

a) \(A=x^2-10x+5=\left(x^2-10x+25\right)-20\)

\(=\left(x-5\right)^2-20\ge-20\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left(x-5\right)^2=0\Rightarrow x=5\)

Vậy \(Min_A=-20\Leftrightarrow x=5\)

b) \(B=3x^2-6x+11=3\left(x^2-2x+1\right)+8\)

\(=3\left(x-1\right)^2+8\ge8\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left(x-1\right)^2=0\Rightarrow x=1\)

Vậy \(Min_B=8\Leftrightarrow x=1\)

c) \(C=8x^2+10x-30=8\left(x^2-\frac{5}{4}x+\frac{25}{64}\right)-\frac{265}{8}\)

\(=8\left(x-\frac{5}{8}\right)^2-\frac{265}{8}\ge-\frac{265}{8}\)

Dấu "=" xảy ra khi: \(\left(x-\frac{5}{8}\right)^2=0\Rightarrow x=\frac{5}{8}\)

Vậy \(Min_C=-\frac{265}{8}\Leftrightarrow x=\frac{5}{8}\)

30 tháng 6 2018

1/a) Ta có: \(A=x^4+\left(y-2\right)^2-8\ge-8\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=0\\y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\y=2\end{cases}}\)

Vậy GTNN của A = -8 khi x=0, y=2.

b) Ta có: \(B=|x-3|+|x-7|\)

\(=|x-3|+|7-x|\ge|x-3+7-x|=4\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x\ge3\\x\le7\end{cases}}\Rightarrow3\le x\le7\)

Vậy GTNN của B = 4 khi \(3\le x\le7\)

2/ a) Ta có: \(xy+3x-7y=21\Rightarrow xy+3x-7y-21=0\)

\(\Rightarrow x\left(y+3\right)-7\left(y+3\right)=0\Rightarrow\left(x-7\right)\left(y+3\right)=0\)

\(\Rightarrow\hept{\begin{cases}x=7\\y=-3\end{cases}}\)

b) Ta có: \(\frac{x+3}{y+5}=\frac{3}{5}\)và \(x+y=16\)

Áp dụng tính chất bằng nhau của dãy tỉ số, ta có:

\(\frac{x+3}{y+5}=\frac{3}{5}\Rightarrow\frac{x+3}{3}=\frac{y+5}{5}=\frac{x+y+8}{8}=\frac{16+8}{8}=\frac{24}{8}=3\)

\(\Rightarrow\hept{\begin{cases}\frac{x+3}{3}=3\Rightarrow x+3=9\Rightarrow x=6\\\frac{y+5}{5}=3\Rightarrow y+5=15\Rightarrow y=10\end{cases}}\)

Bài 3: đề không rõ.

30 tháng 6 2018

Bài 1:\(a,A=x^4+\left(y-2\right)^2-8\)

Có \(x^4\ge0;\left(y-2\right)^2\ge0\)

\(\Rightarrow A\ge0+0-8=-8\)

Dấu "=" xảy ra khi \(MinA=-8\Leftrightarrow x=0;y=2\)

\(b,B=\left|x-3\right|+\left|x-7\right|\)

\(\Rightarrow B=\left|x-3\right|+\left|7-x\right|\)

\(\Rightarrow B\ge\left|x-3+7-x\right|\)

\(\Rightarrow B\ge\left|-10\right|=10\)

Dấu "=" xảy ra khi \(MinB=10\Leftrightarrow3\le x\le7\Rightarrow x\in\left(3;4;5;6;7\right)\)

12 tháng 2 2019

a đây là điều hiển nhiên

b (x-8)2>=0 nên (x-8)-2018>=-2018

dấu "=" xảy ra khi x=8

c/(x+5)>=0 nên -(x+5)2 <=0

nên -(x+5)2 +9<=9

dấu "=" xảy ra khi x=-5

26 tháng 2 2017

a) Có

b) Không

c) \(\frac{1}{3}\)

d) 1

26 tháng 2 2017

Cảm ơn bn Minato Namikaze nha !

9 tháng 3 2020

Ta có \(|x-5|\ge0;\forall x\Rightarrow|x-5|+25\ge25;\forall x\Rightarrow A\ge25,\forall x\)

GTNN của A là 25 khi và chỉ khi x=5

\(\left(x-2\right)^2\ge0;\forall x\Rightarrow\left(x-2\right)^2-16\ge-16;\forall x\Rightarrow B\ge-16,\forall x\)

GTNN của B là -16 khi x=2

b) \(|x+3|\ge0;\forall x\Rightarrow-|x+3|-5\le-5;\forall x\Rightarrow C\le-5,\forall x\)

GTLN của C là -5 khi và chỉ khi x=-3

\(\left(x+1\right)^2\ge0;\forall x\Rightarrow-\left(x+1\right)^2\le0;\forall x\Rightarrow D\le14,\forall x\)

GTLN của D là 14 khi và chỉ khi x = -1

9 tháng 3 2020

a, Tìm giá trị nhỏ nhất của biểu thức:

A = \(|x-5|+25\)

Để A nhỏ nhất \(\Rightarrow\)\(|x-5|+25\)nhỏ nhất 

\(\Rightarrow\)\(|x-5|\)nhỏ nhất 

Mà  \(|x-5|\)\(\ge0\forall x\inℤ\)

\(\Rightarrow\) \(|x-5|\)\(=0\)                                (1)

Thay (1) vào A, ta có:

A = 0 + 25

A = 25

Vậy giá trị nhỏ nhất của A là 25

\(B=-16+\left(x-2\right)^2\)

Để B nhỏ nhất \(\Rightarrow\)\(-16+\left(x-2\right)^2\)nhỏ nhất

\(\Rightarrow\left(x-2\right)^2\)nhỏ nhất

Mà \(\left(x-2\right)^2\)\(\ge0\forall x\inℤ\)

\(\Rightarrow\left(x-2\right)^2\)\(=0\)                                   (2)

Thay (2) vào B, ta có :

B =  \(-16+0\)

B = \(-16\)

Vậy giá trị nhỏ nhất của B là -16

15 tháng 5 2016

để A\(\in\)Z

=>5 chia hết x-2

=>x-2\(\in\){1,-1,5,-5}

=>x\(\in\){3,1,7,-3}

\(C=\frac{3x-19}{x-5}=\frac{3\left(x-5\right)-4}{x-5}=\frac{3\left(x-5\right)}{x-5}-\frac{4}{x-5}\in Z\)

=>4 chia hết x-5

=>x-5\(\in\){1,-1,2,-2,4,-4}

=>x\(\in\){6,4,7,3,9,1}

B tương tự nhé

16 tháng 5 2016

bạn làm sai rồi

giá trị nhỏ nhất lớn nhất mà chưa học à

2 tháng 1 2015

a) muốn A đạt giá trị lớn nhất thì /x-5/ đạt giá trị nhỏ nhât

mà /x-5/ đạt giá trị nhỏ nhất bằng 0

suy ra giá trị lớn nhất của A là 1000 khi x=5

b) muốn B đạt giá trị nhỏ nhất t hì /y-3/ đạt già trị nhỏ nhất

mà /y-3/ đạt giá trị nhỏ nhất bằng 0

suy ra giá trị nhỏ nhất của B bằng 50 khi y=3

c) muốn C đạt giá trị nhỏ nhất thì /x-100/ và /y+200/ đạt giá trị nhỏ nhất

mà /x-100/ đạt giá trị nhỏ nhất bằng 0

    /y+200/ đạt giá trị nhỏ nhất bằng 0

suy ra giá trị nhỏ nhất của C bằng -1 khi x=100 và y=-200

15 tháng 12 2017

a) muốn A đạt giá trị lớn nhất thì /x-5/ đạt giá trị nhỏ nhât

mà /x-5/ đạt giá trị nhỏ nhất bằng 0

suy ra giá trị lớn nhất của A là 1000 khi x=5

b) muốn B đạt giá trị nhỏ nhất t hì /y-3/ đạt già trị nhỏ nhất

mà /y-3/ đạt giá trị nhỏ nhất bằng 0

suy ra giá trị nhỏ nhất của B bằng 50 khi y=3

c) muốn C đạt giá trị nhỏ nhất thì /x-100/ và /y+200/ đạt giá trị nhỏ nhất

mà /x-100/ đạt giá trị nhỏ nhất bằng 0

    /y+200/ đạt giá trị nhỏ nhất bằng 0

suy ra giá trị nhỏ nhất của C bằng -1 khi x=100 và y=-200

20 tháng 2 2021

Để \(\frac{2008}{x-1000}\)đạt giá trị lớn nhất 

Thì \(x-1000\)đạt giá trị dương nhỏ nhất 

Mà x nguyên\(=>x=1001\)