K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9 2017

a) A = 4x2 + 4x +11

=> (2x)2+2.2x+1+11-1

=> (2x+1)2+10

do (2x+1)2 \(\dfrac{>}{ }\) 0 vs mọi x

(2x+1)2 +10 \(\dfrac{>}{ }\)10 vs mọi x

GTNNA=10 khi

2x+1=0

=>x=\(\dfrac{-1}{2}\)

10 tháng 11 2017

a)\(A=4x^2+4x+11\)

\(\Leftrightarrow A=4x^2+4x+1+10\)

\(\Leftrightarrow A=\left(2x+1\right)^2+10\)

\(\left(2x+1\right)^2\ge0\)

Nên \(\left(2x+1\right)^2+10\ge10\)

Vậy GTNN của A=10 khi \(2x+1=0\Leftrightarrow x=\dfrac{-1}{2}\)

b) \(B=2x-2x^2-5\)

\(\Leftrightarrow B=-2x^2+2x-5\)

\(\Leftrightarrow B=-2x^2+2x-\dfrac{1}{2}-\dfrac{9}{2}\)

\(\Leftrightarrow B=-\left(2x^2-2x+\dfrac{1}{2}\right)-\dfrac{9}{2}\)

\(\Leftrightarrow B=-2\left(x^2-x+\dfrac{1}{4}\right)-\dfrac{9}{2}\)

\(\Leftrightarrow B=-2\left(x^2-2.x\dfrac{1}{2}+\dfrac{1}{4}\right)-\dfrac{9}{2}\)

\(\Leftrightarrow B=-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{2}\)

\(\left(x-\dfrac{1}{2}\right)^2\ge0\)

Do đó \(-\left(x-\dfrac{1}{2}\right)^2\le0\)

Nên \(-\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{2}\le\dfrac{-9}{2}\)

Vậy GTLN của \(B=\dfrac{-9}{2}\) khi \(x-\dfrac{1}{2}=0\Leftrightarrow x=\dfrac{1}{2}\)

c) \(C=4x^2-12x\)

\(\Leftrightarrow C=4x^2-12x+9-9\)

\(\Leftrightarrow C=\left(4x^2-12x+9\right)-9\)

\(\Leftrightarrow C=\left(2x-3\right)^2-9\)

\(\left(2x-3\right)^2\ge0\)

Nên \(\left(2x-3\right)^2-9\ge-9\)

Vậy GTNN của \(C=-9\) khi \(2x-3=0\Leftrightarrow x=\dfrac{3}{2}\)

d) \(D=5-x^2+2x-4y^2-4y\)

\(\Leftrightarrow D=7-1-1-x^2+2x-4y^2-4y\)

\(\Leftrightarrow D=-x^2+2x-1-4y^2-4y-1+7\)

\(\Leftrightarrow D=-\left(x^2-2x+1\right)-\left(4y^2+4y+1\right)+7\)

\(\Leftrightarrow D=-\left(x-1\right)^2-\left(2y+1\right)^2+7\)

Vậy GTLN của \(D=7\) khi \(\left\{{}\begin{matrix}x-1=0\Leftrightarrow x=1\\2y+1=0\Leftrightarrow y=\dfrac{-1}{2}\end{matrix}\right.\)

7 tháng 4 2020

a) \(A=\left(x^2-2.2x+4\right)-3\)

\(A=\left(x-2\right)^2-3\ge-3\Leftrightarrow x=2\)

Vậy minA = -3 khi x = 2

b) \(B=4x^2+4x+11\)

\(B=\left(\left(2x\right)^2+2x.1+1\right)+10\)

\(B=\left(2x+1\right)^2+10\ge10\Leftrightarrow x=-\frac{1}{2}\)

Vậy min B = 10 khi x = -1/2

c) \(C=\left(x11\right)\left(x+3\right)\left(x+2\right)\left(x+6\right)\)

\(C=\left(x-1\right)\left(x+6\right)\left(x+3\right)\left(x+2\right)\)

\(C=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)

\(C=\left(x^2+5x\right)^2-36\ge-36\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=0\end{matrix}\right.\)

Vậy MinC= -36 khi x =0 và x = -5

d) \(D=2x^2+y^2-2xy+2x-4y+9\)

\(D=y^2-2y\left(x+2\right)+\left(x+2\right)^2-x^2-4x-4+2x^2+2x+9\)

\(D=\left(y^2-y-x\right)^2+x^2-2x+5\)

\(D=\left(y^2-x-2\right)+\left(x-1\right)^2+4\ge4\Leftrightarrow\left[{}\begin{matrix}x=1\\y=3\end{matrix}\right.\)

Vậy min D = 4 khi x = 1 và y = 3

17 tháng 9 2018

Bài dài quá bạn mình VD mỗi bài 1 câu thôi 

Bài 1 : Phương pháp : biểu diễn biểu thức dưới dạng một lũy thừa mũ chẵn cộng với một số nguyên dương

a) x2 + 2x + 2 

= x2 + 2 . x . 1 + 11 + 1

= ( x + 1 )2 + 1

mà ( x + 1 )2 >= 0 với mọi x

=> ( x + 1 )2 + 1 >= 1 với mọi x => vô nghiệm

17 tháng 9 2018

Bài 2 :

a) \(4x^2-12x+11\)

\(=4\left(x^2-3x+\frac{11}{4}\right)\)

\(=4\left(x^2-2\cdot x\cdot\frac{3}{2}+\left(\frac{3}{2}\right)^2+\frac{1}{2}\right)\)

\(=4\left[\left(x-\frac{3}{2}\right)^2+\frac{1}{2}\right]\)

\(=4\left(x-\frac{3}{2}\right)^2+2\)

mà 4 ( x - 3/2 )2 >= 0 với mọi x

=> biểu thức >= 2 với mọi x

Dấu "=" xảy ra <=> x - 3/2 = 0 <=> x = 3/2

Vậy Amin = 2 <=> x = 3/2

19 tháng 9 2020

a) Đặt \(A=x^2-2x+1\)

    Ta có: \(A=x^2-2x+1=\left(x-1\right)^2\)

     Vì \(\left(x-1\right)^2\ge0\forall x\)

    \(\Rightarrow A_{min}=0\)

    Dấu "=" xảy ra khi: \(x-1=0\)

                            \(\Leftrightarrow x=1\)

Vậy \(A_{min}=0\)\(\Leftrightarrow\)\(x=1\)

19 tháng 9 2020

b) Ta có: \(M=x^2-3x+10\)

        \(\Leftrightarrow M=\left(x^2-3x+\frac{9}{4}\right)+\frac{31}{4}\)

        \(\Leftrightarrow M=\left(x-\frac{3}{2}\right)^2+\frac{31}{4}\)

    Vì \(\left(x-\frac{3}{2}\right)^2\ge0\forall x\)\(\Rightarrow\)\(\left(x-\frac{3}{2}\right)^2+\frac{31}{4}\ge\frac{31}{4}\forall x\)

     \(\Rightarrow\)\(M_{min}=\frac{31}{4}\)

    Dấu "=" xảy ra khi: \(x-\frac{3}{2}=0\)

                            \(\Leftrightarrow x=\frac{3}{2}\)

Vậy \(M_{min}=\frac{31}{4}\)\(\Leftrightarrow\)\(x=\frac{3}{2}\)

7 tháng 7 2017

( x - 1) ( x + 6 ) ( x + 2 ) ( x + 3 ) 

<=> ( x2 + 6x - x - 6 ) ( x2 + 3x + 2x + 6)

<=> ( x2 - 5x )2 lun nhỏ hơn 0 

Nên dấu " =" xảy ra khi ( x2- 5x)2 = 0

x2 - 5x= 0 <=> x ( x - 5) = 0 <=> x=0 hoặc 5 

^^ Học tốt nha!!!!

7 tháng 7 2017

a) Ta có : 4x2 + 4x + 11

= (2x)2 + 4x + 11

= (2x)2 + 4x + 1 + 10

= (2x + 1)2 + 10

Mà (2x + 1)2 \(\ge0\forall x\)

Nên (2x + 1)2 + 10 \(\ge10\forall x\)

Vậy GTNN của biểu thức là : 10 khi x = \(-\frac{1}{2}\)

12 tháng 6 2019

a/ \(4x^2+4x+11\)

\(=\left(2x^2\right)+2\cdot2x+1-1+11\)

\(=\left(2x+1\right)^2-1+11\)

\(=\left(2x+1\right)^2+10\)

Có :  \(\left(2x+1\right)^2\ge0\)

\(\Rightarrow\left(2x+1\right)^2+10\ge10\)

\(\Rightarrow GTNN\left(4x^2+4x+11\right)=10\)

   Với \(\left(2x+1\right)^2=0;x=-\frac{1}{2}\)

12 tháng 6 2019

\(a,A=4x^2+4x+11\)

\(A=(2x+1)^2+10\)

Do \((2x+1)^2\ge0\Rightarrow(2x+1)^2+10\ge10\forall x\)

\(\Rightarrow Min_a=10\Rightarrow2x+1=0\Rightarrow2x=-1\Leftrightarrow x=-\frac{1}{2}\)

Vậy giá trị nhỏ nhất của A là 10 khi x = -1/2

5 tháng 10 2019

A = 4x - x2 + 3

A = -x2 + 4x + 3

A = - (x2 - 4x - 3)

A = - (x - 2)2 + 7 lớn hơn hoặc bằng 7.

Dấu "=" xảy ra khi x - 2 = 0 => x = 2

Vậy...

5 tháng 10 2019

\(A=4x-x^2+3=-\left(x^2-4x-3\right)\)

\(=-\left(x^2-4x+4-7\right)\)

\(=-\left[\left(x-2\right)^2-7\right]\)

\(=-\left(x-2\right)^2+7\le7\)

Vậy \(A_{max}=7\Leftrightarrow x-2=0\Leftrightarrow x=2\)

\(B=x-x^2=-\left(x^2-x\right)\)

\(=-\left(x^2-x+\frac{1}{4}-\frac{1}{4}\right)\)

\(=-\left[\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\right]\)

\(=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)

Vậy \(B_{max}=\frac{1}{4}\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)

9 tháng 8 2020

C1. ( 2x + 3y )2 + 2( 2x + 3y ) + 1 = [ ( 2x + 3y ) + 1 ]2

C2. ( x + 2 )2 = ( 2x - 1 )2

<=> ( x + 2 )2 - ( 2x - 1 )2 = 0

<=> [ x + 2 + ( 2x - 1 ) ][ x + 2 - ( 2x - 1 ) ] = 0

<=> [ 3x + 1 ][ 3 - x ] = 0

<=> \(\orbr{\begin{cases}3x+1=0\\3-x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-\frac{1}{3}\\x=3\end{cases}}\)

b) ( x + 2 )2 - x + 4 = 0

<=> x2 + 4x + 4 - x + 4 = 0

<=> x2 - 3x + 8 = 0

Mà ta có x2 - 3x + 8 = x2 - 3x + 9/4 + 23/4 = ( x - 3/2 )2 + 23/4 ≥ 23/4 > 0 với mọi x 

=> Phương trình vô nghiệm

C3. a) A =  x2 - 2x + 5 = x2 - 2x + 4 + 1 = ( x - 2 )2 + 1

\(\left(x-2\right)^2\ge0\forall x\Rightarrow\left(x-2\right)^2+1\ge1\)

Dấu " = " xảy ra <=> x - 2 = 0 => x = 2

Vậy AMin = 1 , đạt được khi x = 2

b)B =  x2 - x + 1 = x2 - x + 1/4 + 3/4 = ( x - 1/2 )2 + 3/4

\(\left(x-\frac{1}{2}\right)^2\ge0\forall x\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu " = " xảy ra <=> x - 1/2 = 0 => x = 1/2

Vậy BMin = 3/4, đạt được khi x = 1/2

c) C = ( x - 1 )( x + 2 )( x + 3 )( x + 6 )

C = [ ( x - 1 )( x + 6 )][ ( x + 2 )( x + 3 ]

C = [ x2 + 5x - 6 ][ x2 + 5x + 6 ]

C = ( x2 + 5x )2 - 36 

\(\left(x^2+5x\right)^2\ge0\forall x\Rightarrow\left(x^2+5x\right)^2-36\ge-36\)

Dấu " = " xảy ra <=> x2 + 5x = 0

                          <=> x( x + 5 ) = 0

                          <=> x = 0 hoặc x + 5 = 0

                          <=> x = 0 hoặc x = -5

Vậy CMin = -36, đạt được khi x = 0 hoặc x = -5

d) D =  x2 + 5y2 - 2xy + 4y + 3

= ( x2 - 2xy + y2 ) + ( 4y2 + 4y + 1 ) + 2

= ( x - y )2 + ( 2y + 1 )2 + 2

\(\hept{\begin{cases}\left(x-y\right)^2\ge0\\\left(2y+1\right)^2\ge0\end{cases}}\Rightarrow\left(x-y\right)^2+\left(2y+1\right)^2\ge0\forall x,y\)

=> \(\left(x-y\right)^2+\left(2y+1\right)^2+2\ge2\)

Dấu " = " xảy ra <=> \(\hept{\begin{cases}x-y=0\\2y+1=0\end{cases}}\Rightarrow\hept{\begin{cases}x-y=0\\y=-\frac{1}{2}\end{cases}\Rightarrow}x=y=-\frac{1}{2}\)

Vậy DMin = 2 , đạt được khi x = y = -1/2

C4.  a) ( Cái này tìm được Min k tìm được Max )

A = x2 - 4x - 2 = x2 - 4x + 4 - 6 = ( x - 2 )2 - 6

\(\left(x-2\right)^2\ge0\forall x\Rightarrow\left(x-2\right)^2-6\ge-6\)

Dấu " = " xảy ra <=> x - 2 = 0 => x = 2

Vậy AMin = -6 , đạt được khi x = 2

b) B = -2x2 - 3x + 5 = -2( x2 + 3/2x + 9/16 ) + 49/8 = -2( x + 3/4 )2 + 49/8

\(-2\left(x+\frac{3}{4}\right)^2\le0\Rightarrow-2\left(x+\frac{3}{4}\right)+\frac{49}{8}\le\frac{49}{8}\)

Dấu " = " xảy ra <=> x + 3/4 = 0 => x = -3/4

Vậy BMax = 49/8 , đạt được khi x = -3/4

c) C = ( 2 - x )( x + 4 ) = -x2 - 2x + 8 = -( x2 + 2x + 1 ) + 9 = -( x + 1 )2 + 9 

\(-\left(x+1\right)^2\le0\Rightarrow-\left(x+1\right)^2+9\le9\)

Dấu " = " xảy ra <=> x + 1 = 0 => x = -1

Vậy CMax = 9 , đạt được khi x = -1

d) D = -8x2 + 4xy - y2 + 3 ( Cái này mình đang tính ạ )

C5. a) A = 25x2 - 20x + 7

A = 25x2 - 20x + 4 + 3

A = ( 5x2 - 2 )2 + 3 ≥ 3 > 0 với mọi x ( đpcm )

b) B = 9x2 - 6xy + 2y2 + 1

B = ( 9x2 - 6xy + y2 ) + y2 + 1

B = ( 3x - y )2 + y2 + 1 ≥ 1 > 0 với mọi x, y ( đpcm )

c) C = x2 - 2x + y2 + 4y + 6 

C = ( x2 - 2x + 1 ) + ( y2 + 4y + 4 ) + 1

C = ( x - 1 )2 + ( y + 2 )2 + 1 ≥ 1 > 0 với mọi x,y ( đpcm )

d) D = x2 - 2x + 2 

D = x2 - 2x + 1 + 1

D = ( x - 1 )2 + 1 ≥ 1 > 0 với mọi x ( đpcm )