Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :\(y=\frac{x^2+2}{x^2+x+1}\)
\(\Leftrightarrow yx^2+yx+y=x^2+2\)
\(\Leftrightarrow x^2\left(y-1\right)+yx+y-2=0\)(1)
*Xét y = 1 thì pt trở thành \(x-1=0\)
\(\Leftrightarrow x=1\)
*Xét \(y\ne1\)thì pt (1) là pt bậc 2 ẩn x
Có \(\Delta=y^2-4\left(y-1\right)\left(y-2\right)\)
\(=y^2-4\left(y^2-3y+2\right)\)
\(=y^2-4y^2+12y-8\)
\(=-3y^2+12y-8\)
Pt (1) có nghiệm khi \(\Delta\ge0\)
\(\Leftrightarrow-3y^2+12y-8\ge0\)
\(\Leftrightarrow\frac{6-2\sqrt{3}}{3}\le y\le\frac{6+2\sqrt{3}}{3}\)
\(ĐKXĐ:x\ge0\)
Ta có : \(D=\frac{2011x-2\sqrt{x}+1}{\sqrt{x}}=2011\sqrt{x}+\frac{1}{\sqrt{x}}-2\)
Theo BĐT AM - GM ta có :
\(2011\sqrt{x}+\frac{1}{\sqrt{x}}\ge2\sqrt{2011\sqrt{x}\cdot\frac{1}{\sqrt{x}}}=2\sqrt{2011}\)
\(\Rightarrow2011\sqrt{x}+\frac{1}{\sqrt{x}}-2\ge2\left(\sqrt{2011}-1\right)\)
Dấu "=" xảy ra \(\Leftrightarrow x=\frac{1}{2011}\)
Vậy \(D_{min}=2\left(\sqrt{2011}-1\right)\) tại \(x=\frac{1}{2011}\)
a) DK : x > 0; x khác 1
\(P=\sqrt{x}\left(\sqrt{x}-1\right)-\left(2\sqrt{x}+1\right)+2\left(\sqrt{x}+1\right)\)
\(=x-\sqrt{x}+1\)
c ) \(Q=\frac{2\sqrt{x}}{P}=\frac{2\sqrt{x}}{x-\sqrt{x}+1}\)
<=> \(xQ-\left(Q+2\right)\sqrt{x}+Q=0\)(1)
TH1: Q = 0 => x = 0 loại
TH2: Q khác 0
(1) là phương trình bậc 2 với tham số Q ẩn x.
(1) có nghiệm <=> \(\left(Q+2\right)^2-4Q^2\ge0\)
<=> \(-3Q^2+4Q+4\ge0\)
<=> \(-\frac{2}{3}\le Q\le2\)
Vì Q nguyên và khác 0 nên Q = 1 hoặc Q = 2
Với Q = 1 => \(x-3\sqrt{x}+1=0\)
<=> \(\sqrt{x}=\frac{3}{2}\pm\frac{\sqrt{5}}{2}\)----> Tìm được x
Với Q = 2 => \(2x-4\sqrt{x}+1=0\Leftrightarrow\sqrt{x}=1\pm\frac{1}{\sqrt{2}}\)-----> tìm đc x.
Tự làm tiếp nhé! Kiểm tra lại đề bài câu b.
a) Từ đề bài có: \(x\left(x-1\right)\le0\Rightarrow x^2\le x\)
Tương tự hai BĐT còn lại và cộng theo vế suy ra:
\(M=x+y+z-3\ge x^2+y^2+z^2-3=-2\)
Đẳng thức xảy ra khi (x;y;z) = (0;0;1) và các hoán vị của nó
Is it true?
\(4\le\sqrt{x}+\sqrt{y}+\sqrt{xy}+1\le\sqrt{2\left(x+y\right)}+\frac{x+y}{2}+1\)
\(\Leftrightarrow\)\(8\le x+y+2\sqrt{x+y}\sqrt{2}+2=\left(\sqrt{x+y}+\sqrt{2}\right)^2\)
\(\Leftrightarrow\)\(\sqrt{x+y}+\sqrt{2}\ge\sqrt{8}\)
\(\Leftrightarrow\)\(x+y\ge\left(\sqrt{8}-\sqrt{2}\right)^2=2\)
\(\Rightarrow\)\(P=\frac{x^2}{y}+\frac{y^2}{x}\ge\frac{\left(x+y\right)^2}{x+y}=x+y\ge2\)
Dấu "=" xảy ra khi \(x=y=1\)
Áp dụng bđt AM-GM ta có
\(\sqrt{3x\left(2x+y\right)}+\sqrt{3y\left(2y+x\right)}\le\frac{3x+2x+y}{2}+\frac{3y+2y+x}{2}=\frac{6\left(x+y\right)}{2}=3\left(x+y\right)\)
\(\Rightarrow P\ge\frac{x+y}{3\left(x+y\right)}=\frac{1}{3}\)
Dấu "=" xảy ra khi x=y
ta có
can x+1 >=0 voi moi x
can 6-x >=0 voi moi x
=> căn x+1 + căn 6-x >= 0
Q2=7+2\(\sqrt{\left(x+1\right)\left(6-x\right)}\)\(\ge\)7 => Q\(\ge\)\(\sqrt{7}\)
dấu bằng khi x=-1 hoặc x=6
Q2=7+2\(\sqrt{\left(x+1\right)\left(6-x\right)}\)\(\le\)7+x+1+6-x = 14 => Q\(\le\) \(\sqrt{14}\)
dấu bằng khi x+1 = 6-x <=> 2x =5 <=> x=2.5