Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B đạt giá trị lớn nhất \(\Leftrightarrow\frac{21}{8.\left|15x-21\right|+7}\) đạt GTLN
\(\Leftrightarrow8.\left|15x-21\right|+7\) đạt GTNN
Vì \(\left|15x-21\right|\ge0\left(\forall x\in Z\right)\)
Nên suy ra \(8.\left|15x-21\right|+7\ge7\)
Dấu "=" xảy ra <=> \(15x-21=0\Leftrightarrow15x=21\Leftrightarrow x=\frac{21}{15}=\frac{7}{5}\)
Vậy GTLN của biểu thức B = \(\frac{-1}{3}+\frac{21}{7}=\frac{8}{3}\) khi \(x=\frac{7}{5}\)
\(B=-\frac{1}{3}+\frac{21}{8\left|15x-21\right|+7}\le-\frac{1}{3}+\frac{21}{7}=-\frac{1}{3}+3=\frac{8}{3}\)
Dấu ''='' xảy ra \(\Leftrightarrow15x-21=0\)
\(\Leftrightarrow x=\frac{7}{5}\)
Vậy ........
Để \(\frac{1}{\left(x-2\right)^2+8}\) đạt giá trị lớn nhất
mà (x-2)^2 + 8 >= 0; 8 > 0 => (x-2)^2 + 8 >0
=> (x - 2 ) ^2 + 8 = 8
(x-2) ^2 = 0
x -2 = 0
x = 2
KL:x = 2 để 1/(x-2)^2+ 8 đạt giá trị lớn nhất ( giá trị lớn nhất của 1/(x-2)^2+8 = 1/8 )
Giải:
Ta có: A = \(\frac{2017-2n}{8n-4}\)
=> 4A = \(\frac{8068-8n}{8n-4}=\frac{-\left(8n-4\right)+8064}{8n-4}=-1+\frac{8064}{8n-4}\)
Để A đạt giá trị lớn nhất <=> 4A đạt giá trị lớn nhất
<=> \(-1+\frac{8064}{8n-4}\) đạt giá trị lớn nhất
<=> 8n - 4 đạt giá trị nhỏ nhất
Do n \(\in\)Z => 8n - 4 = 4 => 8n = 8 => n = 1
Thay n = 1 vào biểu thức 4A, ta được :
4A = \(-1+\frac{8064}{8.1-4}=-1+\frac{8064}{4}=-1+2016=2015\)
<=> A = \(\frac{2015}{4}\) <=> Max của A = 2015/4 tại n = 1
Ta có
trị tuyệt đối của 15x-2 \(\ge0\)
=>8 nhân trị tuyệt đối của 15x-2\(\ge0\)
=>8 nhân trị tuyệt đối của 15x-2 +7 lớn hơn hoặc bằng 7
=>\(\frac{21}{8\left(15x-2\right)+7}\le3\)
=>Ans+\(+-\frac{1}{3}\le\frac{8}{3}\)
Dấu bằng xảy ra<=>x=2/15
nhớ tick nha