Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bđt:\(\sqrt{a}+\sqrt{b}\ge\sqrt{a+b}\) ta có:
\(A=\sqrt{5x-4}+\sqrt{12-5x}\ge\sqrt{5x-4+12-5x}=\sqrt{8}\)
Dấu "=" xảy ra khi:\(\left(5x-4\right)\left(12-5x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4}{5}\\x=\dfrac{12}{5}\end{matrix}\right.\)
đặt \(\sqrt{x-9}=t\), \(t\ge0\)\(\Rightarrow\)\(x=t^2+9\).
\(A=\frac{t}{5t^2+45}\Leftrightarrow A.5t^2-t+45A=0^{\left(1\right)}\)
Ta sẽ tìm điều kiện của A để phương trinhg (1) có nghiệm \(t\ge0\):
Để phương trình (1) có nghiệm: \(\Delta=1^2-4.5A.45A=1-900A^2\ge0\Leftrightarrow A^2\le\frac{1}{900}\Leftrightarrow-\frac{1}{30}\le A\le\frac{1}{30}\)
\(\hept{\begin{cases}t_1.t_2\ge0\\t_1+t_2\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}9\ge0\\\frac{1}{5A}\ge0\end{cases}\Leftrightarrow}A>0}\)
Ta thấy giá trị lớn nhất của A là \(\frac{1}{30}\)khi x =18, giá trị nhỏ nhất của A là 0 khi x = 9.