Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(\left|x-3,5\right|\ge0\)
\(\Rightarrow0,5-\left|x-3,5\right|\le0,5\)
Vậy giá trị lớn nhất của biểu thức trên là 0,5 khi |x - 3,5| = 0 <=> x = 3,5
b.
\(\left|1,4-x\right|\ge0\)
\(-\left|1,4-x\right|\le0\)
\(-\left|1,4-x\right|-2\le-2\)
Vậy giá trị nhỏ nhất của biểu thức trên là -2 khi |1,4 - x| = 0 <=> x = 1,4
Chúc bạn học tốt ^^
Bài 1. Ta luôn có : \(\left|x+5\right|\ge0\Rightarrow-\left|x+5\right|\le0\Rightarrow3,5-\left|x+5\right|\le3,5\Rightarrow\frac{1}{3,5-\left|x+5\right|}\ge\frac{1}{3,5}\)
Hay \(E\ge\frac{2}{7}\) . Dấu "=" xảy ra khi và chỉ khi \(\left|x+5\right|=0\Rightarrow x=-5\)
Vậy Min E = 2/7 <=> x = -5
Bài 2. Ta có : \(\left|x\right|+\left|y\right|=1\Leftrightarrow\left|\frac{1}{b}\right|+\left|\frac{c}{3}\right|=1\)
Xét các trường hợp :
1. Nếu \(b< 0,c\le0\) thì \(-\frac{1}{b}-\frac{c}{3}=1\Leftrightarrow bc+3=-3b\Leftrightarrow b\left(c+3\right)=-3\)
Vì b,c là các số nguyên nên b = -1 hoặc b = -3
+) Với b = -1 thì c+3 = 3 => c = 0 (t/m)
+) Với b = -3 thì c + 3 = 1 => c = -2 (t/m)
Vậy (b;c) = (-1;0) ; (-3;-2)
2. Nếu \(b>0,c\ge0\) thì \(\frac{1}{b}+\frac{c}{3}=1\Rightarrow bc+3=3b\Rightarrow b\left(c-3\right)=-3\)
Vì b,c là các số nguyên nên b = 1 hoặc b = 3
+) Với b = 1 thì c-3 = -3 => c = 0 (t/m)
+) Với b = 3 thì c-3 = -1 => c = 2 (t/m)
Vậy (b;c) = (3;2) ; (1;0)
3. Nếu \(b>0,c\le0\) thì \(\frac{1}{b}-\frac{c}{3}=1\Rightarrow b\left(c+3\right)=3\)
Tương tự xét như trên được (b;c) = (1;0) ; (3;-2)
4. Nếu b < 0 , \(c\ge0\) thì \(\frac{c}{3}-\frac{1}{b}=1\Rightarrow b\left(c-3\right)=3\)
=> (b;c) = (-1;0) ; (-3;2)
Vậy (b;c) = (-1;0) ; (-3;-2) ; (3;2) ; (1;0) ; (3;-2) ; (-3;2)
Ta có : \(E=\left|x+5\right|+\left|x+2\right|+\left|x-7\right|+\left|x-8\right|=\left(\left|x+5\right|+\left|8-x\right|\right)+\left(\left|7-x\right|+\left|x+2\right|\right)\)
\(\ge\left|x+5+8-x\right|+\left|7-x+x+2\right|=22\)
Dấu "=" xảy ra khi \(\begin{cases}-5\le x\le8\\-2\le x\le7\end{cases}\) \(\Rightarrow-2\le x\le7\)
Vậy MIN E = 22 khi \(-2\le x\le7\)
Ta thấy:\(\left|3x+\frac{1}{7}\right|\ge0\)
\(\Rightarrow-\left|3x+\frac{1}{7}\right|\le0\)
\(\Rightarrow-\left|3x+\frac{1}{7}\right|+\frac{5}{3}\le\frac{5}{3}\)
\(\Rightarrow C\le\frac{5}{3}\)
Dấu= khi \(x=-\frac{1}{7}\)
Vậy MinC=\(\frac{5}{3}\) khi \(x=-\frac{1}{7}\)
đề là thế này phải ko?
\(\frac{5}{4}.\left(x-3\right)^2\)+2
Nguyễn Nhã Uyên?
\(a.\)
Ta có : \(y=f\left(x\right)=\frac{6}{2x+1}\)
\(\Rightarrow f\left(-5\right)=\frac{6}{2.\left(-5\right)+1}=\frac{6}{-9}=-\frac{2}{3}\)
\(f\left(7\right)=\frac{6}{2.7+1}=\frac{6}{15}=\frac{2}{5}\)
\(b.\)
Ta có : \(y=f\left(x\right)=\frac{6}{2x+1}\)
\(\Rightarrow y=f\left(x\right)=10\)
\(\Rightarrow\frac{6}{2x+1}=10\)
\(\Rightarrow2x+1=6:10=0,6\)
\(\Rightarrow2x=0,6-1=-0,4\)
\(\Rightarrow x=-0,4:2=-0,2\)
Vậy : \(x=-0,2\)
A=0,5-|x-3,5|
vì:-|x-3,5|<0
=> 0,5-|x-3,5|<0,5
MAX A=0,5 khi x=3,5
vậy MAX A = 0,5
B=-|1,4-x |-2< 0
=> -|1,4-x|-2<-2
MAX B=-2 khi x=1,4
vậy MAX B =-2
~~ mình chỉ làm cho bạn đc nhiu đây thôi !! CHÚC BẠN HỌC TỐT NHÁ !~~