K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 1 2017

\(=\frac{2.\left(x^2-x+1\right)+1}{\left(x^2-x+1\right)}\)

\(=2+\frac{1}{\left(x^2-x+1\right)}\)

\(\cdot x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Suy ra: GTLN của phân thức: \(\frac{1}{\left(x^2-x+1\right)}:\frac{4}{3}\Leftrightarrow x=\frac{1}{2}\)

Vậy GTLN của Phân thức ban đầu là: \(\frac{10}{3}\)( khi x bằng 1 phần 2 ) ( : nghĩa là là)

25 tháng 1 2017

Gọi pt trên là A.

Ta có A = 2 + \(\frac{1}{x^2-x+1}\)

=> Pt đạt gt lớn nhất <=> \(\frac{1}{x^2-x+1}\)đạt gt lớn nhất <=> \(x^2-x+1\)đạt gt nhỏ nhất <=> x = 1.

6 tháng 9 2016

minh ko biet lam

bai nay dau!

bài nào dễ thì mình mới làm được nha!

mình không giúp được nhưng các bạn bấm vào đây

xem xong ủng hộ nha

chúc bạn học tốt

8 tháng 12 2018

\(B=\frac{x^2-2}{x^2+1}=\frac{x^2+1-3}{x^2+1}=1-\frac{3}{x^2+1}\)

 \(B_{min}\Rightarrow\left(\frac{3}{x^2+1}\right)_{max}\Rightarrow\left(x^2+1\right)_{min}\)

\(x^2+1\ge1\). dấu = xảy ra khi x2=0

=> x=0

Vậy \(B_{min}\Leftrightarrow x=0\)

ta có: \(x^2+2x-2=x^2+2x+1^2-3=\left(x+1\right)^2-3\ge-3\)

dấu = xảy ra khi \(x+1=0\)

\(\Rightarrow x=-1\)

Vậy\(\left(x^2+2x-2\right)_{min}\Leftrightarrow x=-1\)

8 tháng 12 2018

Để A xác định 

\(\Rightarrow\hept{\begin{cases}x-1\ne0\\x^2-1\ne0\\x^2-2x+1\ne0\end{cases}}\)

\(\Rightarrow x^2-1\ne0\)

\(\Rightarrow\hept{\begin{cases}x\ne1\\x\ne-1\end{cases}}\)

b, 

24 tháng 1 2021

Bài 1 

Ta có : \(\frac{2x+2}{x^2-1}=0\)ĐK : \(x\ne\pm1\)

\(\Leftrightarrow2x+2=0\Leftrightarrow x=-1\)( ktm )

Bài 2 : 

Ta có : \(\frac{2x+3}{-x+5}=\frac{3}{4}\)ĐK : \(x\ne5\)

\(\Leftrightarrow8x+12=-3x+15\Leftrightarrow11x=3\Leftrightarrow x=\frac{3}{11}\)

Vậy phương trình có tập nghiệm là S = { 3/11 }

1 tháng 1 2020

Ta có: A = \(\frac{3x^2-2x+3}{x^2+1}=\frac{3\left(x^2+1\right)-2x}{x^2+1}\)

\(=3+\frac{-2x}{x^2+1}=3+\frac{x^2-2x+1-\left(x^2+1\right)}{x^2+1}\)

\(=3+\frac{\left(x-1\right)^2}{x^2+1}-1\)

\(=\frac{\left(x-1\right)^2}{x^2+1}+2\ge2\forall x\)

Dấu "=" xảy ra <=> x - 1 = 0 <=> x = 1

Vậy MinA = 2 khi x = 1

3 tháng 8 2016

a) Xét mẫu thức : \(x^3-3x-18=\left(x-3\right)\left(x^2+3x+6\right)\)

\(M=\frac{x-3}{x^3-3x-18}=\frac{x-3}{\left(x-3\right)\left(x^2+3x+6\right)}=\frac{1}{x^2+3x+6}=\frac{1}{\left(x+\frac{3}{2}\right)^2+\frac{15}{4}}\le\frac{4}{15}\)

Dấu "=" xảy ra <=> x = -3/2

Vậy Max M = 4/15 tại x = -3/2

b) \(N=\frac{x^2+x+1}{x^2+2x+1}=\frac{x^2+x+1}{\left(x+1\right)^2}\). Đặt \(y=x+1\)\(\Rightarrow x=y-1\)

Suy ra \(N=\frac{\left(y-1\right)^2+\left(y-1\right)+1}{y^2}=\frac{y^2-y+1}{y^2}=\frac{1}{y^2}-\frac{1}{y}+1\)

Lại đặt \(t=\frac{1}{y}\)\(N=t^2-t+1=\left(t-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu "=" xảy ra <=> \(t=\frac{1}{2}\Leftrightarrow y=2\Leftrightarrow x=1\)

Vậy Min N = 3/4 tại x = 1

3 tháng 3 2017

Min la 3/4

3 tháng 3 2017

Ta có:

\(\frac{x^2+x+1}{x^2+2x+1}\)=\(\frac{0,75x^2+1,5x+0,75}{x^2+2x+1}\)+\(\frac{0,25x^2-0,5x+0,25}{x^2+2x+1}\)

=\(\frac{3}{4}\)+\(\frac{0,25\left(x-1\right)^2}{\left(x+1\right)^2}\)>=\(\frac{3}{4}\)