Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\frac{2.\left(x^2-x+1\right)+1}{\left(x^2-x+1\right)}\)
\(=2+\frac{1}{\left(x^2-x+1\right)}\)
\(\cdot x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Suy ra: GTLN của phân thức: \(\frac{1}{\left(x^2-x+1\right)}:\frac{4}{3}\Leftrightarrow x=\frac{1}{2}\)
Vậy GTLN của Phân thức ban đầu là: \(\frac{10}{3}\)( khi x bằng 1 phần 2 ) ( : nghĩa là là)
Gọi pt trên là A.
Ta có A = 2 + \(\frac{1}{x^2-x+1}\)
=> Pt đạt gt lớn nhất <=> \(\frac{1}{x^2-x+1}\)đạt gt lớn nhất <=> \(x^2-x+1\)đạt gt nhỏ nhất <=> x = 1.
mình không giúp được nhưng các bạn bấm vào đây
xem xong ủng hộ nha
chúc bạn học tốt
\(B=\frac{x^2-2}{x^2+1}=\frac{x^2+1-3}{x^2+1}=1-\frac{3}{x^2+1}\)
\(B_{min}\Rightarrow\left(\frac{3}{x^2+1}\right)_{max}\Rightarrow\left(x^2+1\right)_{min}\)
\(x^2+1\ge1\). dấu = xảy ra khi x2=0
=> x=0
Vậy \(B_{min}\Leftrightarrow x=0\)
ta có: \(x^2+2x-2=x^2+2x+1^2-3=\left(x+1\right)^2-3\ge-3\)
dấu = xảy ra khi \(x+1=0\)
\(\Rightarrow x=-1\)
Vậy\(\left(x^2+2x-2\right)_{min}\Leftrightarrow x=-1\)
Bài 1
Ta có : \(\frac{2x+2}{x^2-1}=0\)ĐK : \(x\ne\pm1\)
\(\Leftrightarrow2x+2=0\Leftrightarrow x=-1\)( ktm )
Bài 2 :
Ta có : \(\frac{2x+3}{-x+5}=\frac{3}{4}\)ĐK : \(x\ne5\)
\(\Leftrightarrow8x+12=-3x+15\Leftrightarrow11x=3\Leftrightarrow x=\frac{3}{11}\)
Vậy phương trình có tập nghiệm là S = { 3/11 }
Ta có: A = \(\frac{3x^2-2x+3}{x^2+1}=\frac{3\left(x^2+1\right)-2x}{x^2+1}\)
\(=3+\frac{-2x}{x^2+1}=3+\frac{x^2-2x+1-\left(x^2+1\right)}{x^2+1}\)
\(=3+\frac{\left(x-1\right)^2}{x^2+1}-1\)
\(=\frac{\left(x-1\right)^2}{x^2+1}+2\ge2\forall x\)
Dấu "=" xảy ra <=> x - 1 = 0 <=> x = 1
Vậy MinA = 2 khi x = 1
a) Xét mẫu thức : \(x^3-3x-18=\left(x-3\right)\left(x^2+3x+6\right)\)
\(M=\frac{x-3}{x^3-3x-18}=\frac{x-3}{\left(x-3\right)\left(x^2+3x+6\right)}=\frac{1}{x^2+3x+6}=\frac{1}{\left(x+\frac{3}{2}\right)^2+\frac{15}{4}}\le\frac{4}{15}\)
Dấu "=" xảy ra <=> x = -3/2
Vậy Max M = 4/15 tại x = -3/2
b) \(N=\frac{x^2+x+1}{x^2+2x+1}=\frac{x^2+x+1}{\left(x+1\right)^2}\). Đặt \(y=x+1\)\(\Rightarrow x=y-1\)
Suy ra \(N=\frac{\left(y-1\right)^2+\left(y-1\right)+1}{y^2}=\frac{y^2-y+1}{y^2}=\frac{1}{y^2}-\frac{1}{y}+1\)
Lại đặt \(t=\frac{1}{y}\), \(N=t^2-t+1=\left(t-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu "=" xảy ra <=> \(t=\frac{1}{2}\Leftrightarrow y=2\Leftrightarrow x=1\)
Vậy Min N = 3/4 tại x = 1
Ta có:
\(\frac{x^2+x+1}{x^2+2x+1}\)=\(\frac{0,75x^2+1,5x+0,75}{x^2+2x+1}\)+\(\frac{0,25x^2-0,5x+0,25}{x^2+2x+1}\)
=\(\frac{3}{4}\)+\(\frac{0,25\left(x-1\right)^2}{\left(x+1\right)^2}\)>=\(\frac{3}{4}\)