Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\left|2x-\frac{1}{3}\right|\ge0\)
\(\Rightarrow A=\left|2x-\frac{1}{3}\right|+107\ge107\)
\(\Rightarrow\)Dấu " =" xảy ra khi \(\left|2x-\frac{1}{3}\right|=0\)
\(\Rightarrow2x-\frac{1}{3}=0\)
\(\Rightarrow2x=\frac{1}{3}\)
\(\Rightarrow x=\frac{1}{6}\)
Vậy A đạt GTNN = 107 khi x = \(\frac{1}{6}\)
b) Ta có: \(\left|x+\frac{3}{5}\right|\ge0\)
\(\Rightarrow B=\left|x+\frac{3}{5}\right|-\frac{1}{2}\ge\frac{-1}{2}\)
=> Dấu" = " xảy ra khi \(\left|x+\frac{3}{5}\right|=0\)
\(\Rightarrow x+\frac{3}{5}=0\)
\(\Rightarrow x=\frac{-3}{5}\)
Vậy B đạt GTNN = \(\frac{-1}{2}\) Khi x = \(\frac{-3}{5}\)
Lúc này thầy viết nhầm mất giá trị b,e,f nó phải bằng 1,2,3 và lúc tính quên không lộn ngược c,f,i. Để thầy giải lại:
Ta hãy xét hai biểu thức \(a+\frac{1}{b+\frac{1}{c}},d+\frac{1}{e+\frac{1}{f}}\). Ta thấy rằng, nếu \(a>d\to a+\frac{1}{b+\frac{1}{c}}>d+1\ge d+\frac{1}{e+\frac{1}{f}}\). Điều đó có nghĩa rằng ở phần không chứa phân số, giá trị càng tăng biểu thức càng lớn, không phụ thuộc vào các giá trị ở mẫu. Suy ra để tổng lớn nhất thì \(a,d,g\) phải nhận các giá trị là \(7,8,9\). Không mất tính tổng quát coi \(a=9,d=8,g=7\).
Tiếp theo, xét hai mẫu số \(b+\frac{1}{c},e+\frac{1}{f}\). Nếu \(b>e\to b+\frac{1}{c}>e+1\ge e+\frac{1}{f}\), điều đó có nghĩa làm cho mẫu số tăng lên nếu phần b tăng lên. Để phân số lớn nhất thì mẫu phải nhỏ nhất. Do đó mà \(b,e,h\) phải nhận các giá trị bé nhất là \(1,2,3\). Không mất tính tổng quát coi \(b=1,e=2,h=3\). Cuối cùng ta có các phân số sắp xếp như sau \(\frac{1}{1+\frac{1}{c}}>\frac{1}{2+\frac{1}{f}}>\frac{1}{3+\frac{1}{i}}\). Các số \(c,f,i\)
chỉ nhận các giá trị là 4,5,6. Từ đó ta thấy \(c=6,f=5,i=4\). Vậy giá trị lớn nhất của tổng sẽ là
\(9+\frac{1}{1+\frac{1}{6}}+8+\frac{1}{2+\frac{1}{5}}+7+\frac{1}{3+\frac{1}{4}}=24+\frac{6}{7}+\frac{5}{11}+\frac{4}{13}=\frac{25645}{1001}\).
Bài 6:
\(M=\left|x-2002\right|+\left|x-2001\right|=\left|2002-x\right|+\left|x-2001\right|\)
Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) có:
\(M\ge\left|2002-x+x-2001\right|=\left|1\right|=1\)
Dấu " = " khi \(\left\{{}\begin{matrix}2002-x\ge0\\x-2001\ge0\end{matrix}\right.\Rightarrow2001\le x\le2002\)
Vậy \(MIN_M=1\) khi \(2001\le x\le2002\)
Bài 8:
a, Ta có: \(A=3,7+\left|4,3-x\right|\ge3,7\)
Dấu " = " khi \(\left|4,3-x\right|=0\Rightarrow x=4,3\)
Vậy \(MIN_A=3,7\) khi x = 4,3
b, \(B=\left|3x+8,4\right|-24,2\ge-24,2\)
Dấu " = " khi \(\left|3x+8,4\right|=0\Rightarrow x=-2,3\)
Vậy \(MIN_B=-24,2\) khi x = -2,3
c, Ta có: \(\left\{{}\begin{matrix}\left|4x-3\right|\ge0\\\left|5y+7,5\right|\ge0\end{matrix}\right.\Rightarrow\left|4x-3\right|+\left|5y+7,5\right|\ge0\)
\(\Rightarrow C\ge17,5\)
Dấu " = " khi \(\left\{{}\begin{matrix}\left|4x-3\right|=0\\\left|5y+7,5\right|=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{3}{4}\\y=-1,5\end{matrix}\right.\)
Vậy \(MIN_C=17,5\) khi \(x=\dfrac{3}{4}\) và y = -1,5
Bài 9:
a, \(D=5,5-\left|2x-1,5\right|\le5,5\)
Dấu " = " khi \(\left|2x-1,5\right|=0\Rightarrow x=0,75\)
Vậy \(MIN_D=5,5\) khi x = 0,75
b, c tương tự
2.
a/\(A=5-I2x-1I\)
Ta thấy: \(I2x-1I\ge0,\forall x\)
nên\(5-I2x-1I\le5\)
\(A=5\)
\(\Leftrightarrow5-I2x-1I=5\)
\(\Leftrightarrow I2x-1I=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)
b/\(B=\frac{1}{Ix-2I+3}\)
Ta thấy : \(Ix-2I\ge0,\forall x\)
nên \(Ix-2I+3\ge3,\forall x\)
\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)
\(B=\frac{1}{3}\)
\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)
\(\Leftrightarrow Ix-2I+3=3\)
\(\Leftrightarrow Ix-2I=0\)
\(\Leftrightarrow x=2\)
Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)
Hai bài này có mấy cái bình phương sẵn rồi nên chỉ sài cái bất đẳng thức \(A^2\ge0\)là được rồi
a/Ta có \(\left(2x+\frac{1}{3}\right)^4\ge0\)
Do đó \(\left(2x+\frac{1}{3}\right)^4-1\ge0-1\)
\(\Leftrightarrow A\ge-1\)
Tới đây vì A lớn hơn hoặc bằng -1 nên giá trị nhỏ nhất của A là -1
Vậy Giá trị nhỏ nhất của A là -1
b/Bạn làm hệt như câu a, với lại nếu bạn suy ra \(A\ge-1\)thì bạn kết luận luôn Giá trị nhỏ nhất của A là -1
Bài 6:
1)\(\left|x+\frac{1}{2}\right|-\frac{1}{3}\ge\frac{-1}{3}\)
Vậy min=-1/3 khi \(x=\frac{-1}{2}\)
2)\(\frac{1}{4}-\left|x-\frac{2}{3}\right|\le\frac{1}{4}\)
Vậy max\(=\frac{1}{4}\Leftrightarrow x=\frac{2}{3}\)
1. a, \(2^{x+2}.3^{x+1}.5^x=10800\)
\(2^x.2^2.3^x.3.5^x=10800\)
\(\Rightarrow\left(2.3.5\right)^x.12=10800\)
\(\Rightarrow30^x=\frac{10800}{12}=900\)
\(\Rightarrow30^x=30^2\)
\(\Rightarrow x=2\)
b,\(3^{x+2}-3^x=24\)
\(\Rightarrow3^x\left(3^2-1\right)=24\)
\(\Rightarrow3^x.8=24\)\(\Rightarrow3^x=3^1\Rightarrow x=1\)
2, c, Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)
Dấu bằng xảy ra khi \(ab\ge0\)
Ta có: \(\left|x-2017\right|=\left|2017-x\right|\)
\(\Rightarrow\left|x-1\right|+\left|2017-x\right|\ge\left|x-1+2017-x\right|\)\(=\left|2016\right|=2016\)
Dấu bằng xảy ra khi \(\left(x-1\right)\left(2017-x\right)\ge0\)\(\Rightarrow2017\ge x\ge1\)
Vậy \(Min_{BT}=2016\)khi \(2017\ge x\ge1\)
d, Áp dụng BĐT \(\left|a\right|-\left|b\right|\le\left|a-b\right|\forall a,b\inℝ\)
Dấu bằng xảy ra khi \(b\left(a-b\right)\ge0\)
Ta có \(B=\left|x-2018\right|-\left|x-2017\right|\le\left|x-2018-x+2017\right|\)
\(\Rightarrow B\le1\)
Dấu bằng xảy ra khi \(\left(x-2017\right)\left[\left(x-2018\right)-\left(x-2017\right)\right]\ge0\)
\(\Rightarrow x\le2017\)
Vậy \(Max_B=1\) khi \(x\le2017\)
để BT \(\frac{5}{\sqrt{2x+1}+2}\) nguyên thì \(\sqrt{2x+1}+2\inƯ\left(5\right)\)
suy ra \(\sqrt{2x+1}+2\in\left\{-5;-1;1;5\right\}\)
\(\Rightarrow\sqrt{2x+1}\in\left\{-7;-3;-1;3\right\}\)
Mà \(\sqrt{2x+1}\ge0\) nên \(\sqrt{2x+1}\)chỉ có thể bằng 3
\(\Rightarrow2x+1=9\Rightarrow x=4\)( thỏa mãn điều kiện \(x\ge-\frac{1}{2}\))
Đây là cách lớp 9. Mk đang phân vân ko biết giải theo cách lớp 7 thế nào!!!!
Ta có : \(P=5\frac{1}{3}-3\left|2x+7\right|\)
Vì : \(3\left|2x+7\right|\ge0\forall x\in R\)
Nên : \(-3\left|2x+7\right|\le0\forall x\in R\)
Suy ra : \(P=5\frac{1}{3}-3\left|2x+7\right|\le5\frac{1}{3}\forall x\in R\)
Vậy GTLN của biểu thức là : \(5\frac{1}{3}\) tại \(x=-\frac{7}{2}\)