K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 9 2018

\(F=5+6x+9x^2\)

\(=\left(9x^2+6x+1\right)+4\)

\(=\left(3x+1\right)^2+4\ge4\)

Dấu = xảy ra \(\Leftrightarrow3x+1=0\Leftrightarrow x=-\dfrac{1}{3}\)

Vậy \(Max_F=4\Leftrightarrow x=-\dfrac{1}{3}\)

7 tháng 9 2018

\(F=5+6x+9x^2\)

\(\Leftrightarrow F=\left(3x\right)^2+2.3x+1+4\)

\(\Leftrightarrow F=\left(3x+1\right)^2+4\)

Do \(\left(3x+1\right)^2\ge0\forall x\)

\(\Rightarrow F=\left(3x+1\right)^2+4\ge4\forall x\)

Dấu " = " xảy ra

\(\Leftrightarrow3x+1=0\Leftrightarrow3x=-1\Leftrightarrow x=-\dfrac{1}{3}\)

Vậy GTNN của P là : \(4\Leftrightarrow x=-\dfrac{1}{3}\)

:D

7 tháng 9 2018

Ta có: F = 5 + 6x + 9x^2

=> F = (3x)^2 + 2.3x.1 + 1^2 + 4

=> F = (3x+1)^2 +4 \(\ge4\). Dấu "=" xảy ra \(\Leftrightarrow3x+1=0\Rightarrow x=\frac{-1}{3}\)

Vậy: GTNN của F = 4 khi x = -1/3

7 tháng 9 2018

\(F=5+6x+9x^2\)'

\(F=9x^2+6x+1+4\)

\(F=\left(3x+1\right)^2+4\)

\(Do\left(3x+1\right)^2\ge0\Rightarrow F\ge4\)

Dấu "=" xảy ra khi 3x + 1 =0

   <=> 3x = -1

   <=> x = -1/3

Vậy Min F = 4 khi x = -1/3

25 tháng 6 2019

TL:

a,\(-\left(x^2-2x+1\right)+1\)1

\(-\left(x-1\right)^2+1\) \(\le\) 1

=>giá trị lớn nhất của biểu thức là 1

vậy........

b,\(-\left(9x^2+6x+1\right)+20\) 

   \(-\left(3x+1\right)^2+20\) 

  \(\le20\) 

=>giá trị lớn nhất cuar biểu thức là 20

vậy.........

hc tốt

Dấu của hạng tử bậc là dấu âm nên chỉ tìm được giá trị lớn nhất thôi nhé.

a) A=2xx2A=2xx2+11A=1(x22x+1)A=1(x1)2Do (x1)20xA=1(x1)21x Du “=” xy ra khi: (x1)2=0x1=0x=1Vy MaxA=1 khi x=1

b) B=196x9x2B=2016x9x2B=20(1+6x+9x2)B=20(1+3x)2Do (1+3x)20xB=20(1+3x)220xDu "=" xy ra khi:(1+3x)2=01+3x=03x=1x=13Vy MaxB=20 khi x=13

4 tháng 11 2018

Bạn tự xét dấu "=" nhé, mình chỉ hướng dẫn cách tách thôi

a) \(A=5x^2-4x+1\)

\(A=5\left(x^2-\frac{4}{5}x+\frac{1}{5}\right)\)

\(A=5\left[x^2-2\cdot x\cdot\frac{2}{5}+\left(\frac{2}{5}\right)^2+\frac{1}{25}\right]\)

\(A=5\left[\left(x-\frac{2}{5}\right)^2+\frac{1}{25}\right]\)

\(A=5\left(x-\frac{2}{5}\right)^2+\frac{1}{5}\ge\frac{1}{5}\forall x\)

b) Tương tự đặt -9 ra ngoài rồi khai triển như câu a)

c) \(F=-2x^2-y^2+2xy+4x-40\)

\(F=-x^2-x^2-y^2+2xy+4x-40\)

\(F=-\left(x^2-2xy+y^2\right)-\left(x^2-4x+4\right)-36\)

\(F=-36-\left(x-y\right)^2-\left(x-2\right)^2\)

\(F=-36-\left[\left(x-y\right)^2+\left(x-2\right)^2\right]\le-36\forall x;y\)

7 tháng 9 2018

\(a,M=x^2+4x+5\)

\(M=x^2+2.x.2+2^2+1\)

\(M=\left(x+2\right)^2+1\ge1\)

Dấu "=" xảy ra khi x = -2

Vậy Min M = 1 <=> x = -2

b, Đặt \(A=9x^2-6x+6\)

\(A=\left(3x\right)^2-2.3x+1+5\)

\(A=\left(3x-1\right)^2+5\ge5\)

Dấu "=" xảy ra khi x = 1/3

Vậy Min A = 5 <=> x = 1/3

7 tháng 9 2018

a) M = x2 + 4x  + 5 

        = x2 + 4x + 4 + 1

        = ( x + 2 )2 + 1

Nhận xét :

( x + 2 )2 > 0 với mọi x

=>  ( x + 2 )2 + 1  > 1

=> M > 1

Dấu " = " xảy ra khi : ( x + 2 )2 = 0

                                => x + 2 = 0

                                 => x = - 2

Vậy giá trị nhỏ nhất của M = 1 khi x = - 2

b) N =  9x2 - 6x + 6

=  9x2 - 6x + 1 + 5 

= ( 3x + 1 )2 + 5

Nhận xét :

( 3x + 1 )2 > 0 với mọi x

=>  ( 3x + 1 )2 + 5 > 5

=> N > 5 

Dấu " = " xảy ra khi : ( 3x + 1 )2 = 0

                               => 3x + 1 = 0

                                => x = \(-\frac{1}{3}\)

Vậy giá trị nhỏ nhất của N = 5 khi x = \(-\frac{1}{3}\) 

30 tháng 9 2018

a)  

\(B=4x^2+4x+2\)

\(=4x^2+4x+1+1\)

\(=\left(2x+1\right)^2+1\)

Nhận thấy:   \(\left(2x+1\right)^2\ge0\)

=>   \(\left(2x+1\right)^2+1>0\)

hay B luôn dương

7 tháng 7 2019

a)

A=\(x^2+5x+7=x^2+2.x.\frac{5}{2}+\frac{25}{4}-\frac{25}{4}+7=\left(x+\frac{5}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

C=\(3x^2-6x+5=\left[\left(\sqrt{3}x\right)^2-2.\sqrt{3}x.\sqrt{3}+\left(\sqrt{3}\right)^2\right]-\left(\sqrt{3}\right)^2+5\ge2 \)

b)

C=\(-x^2+4x-5=-\left(x^2-4x+5\right)=-\left(x^2-4x+4+1\right)=-\left[\left(x-2\right)^2+1\right]\)

Ta có :\(\left(x-2\right)^2+1\ge1\Leftrightarrow-\left[\left(x-2\right)^2+1\right]\le\)-1

17 tháng 7 2016

a,A=x^2+2.x.5/2+25/4+3/4

    =(x+5/2)2+3/4

nx:(x+5/2)^2 luôn> hoặc = 0 nên (x+5/2)^2+3/4 >hoặc =3/4

vậy GTNN của A là 3/4

b,B=6x-x2-5

    = - (x2-6x+5)

    = - (x2-2.x.3+9-4)

    =-[(x-3)2-4]

    =-(x-3)^2+4

nx; -(x-3)^2 luôn nhỏ  hơn hoặc bằng 0 nên -(x-3)^2 +4 luôn < hoặc= 4

Vậy GTLN của B là 4

9 tháng 1 2017

ta có 

P = 2x^2 - 6x 

= 2( x^2 - 3x + 9/4) - 9/4

= 2( x-3/2)^2 - 9/4 

nhận xét 2(x-3/2)^2 >=0 

=> 2(x-3/2)^2 - 9/4 >=-9/4

dấu = xảy ra khi và chỉ khi 

x- 3/2 = 0 

=> x= 3/2

9 tháng 1 2017

4x - x^2 + 3 

= -x^2 + 4x - 4 +7

= -(x^2 - 4x + 4) + 7 

= -(x-2)^2 + 7 

nhận xét -(x-2)^2 <=0 

=> -(x-2)^2 + 7 <=7 

đấu = xảy ra khi và chỉ khi 

x-2 = 0 

=> x= 2