\(\frac{1}{2}\)

b) D= -3-|...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2017

a ) Ta có : |2 - 3x| ≥ 0 √ x => - |2 - 3x| ≤ 0 √ x

=> - |2 - 3x| + 1/2 ≤ 1/2 √ x

Dấu "=" xảy ra khi - |2 - 3x| = 0 <=> x = 2/3

Vậy Cmax là 1/2 tại x = 2/3

Ta có : |2x + 4| ≥ 0 √ x => - |2x + 4| ≤ 0 √ x

=> - 3 - |2x + 4| ≤ - 3 √ x

Dấu "=" xảy ra khi - |2x + 4| = 0 <=> x = 2

Vậy Dmax là - 3 tại x = 2

19 tháng 2 2019

Bài 2

Ta có :

\(3y^2-12=0\)

\(3y^2=0+12\)

\(3y^2=12\)

\(y^2=12:3\)

\(y^2=4\)

\(\Rightarrow y=\pm2\)

b) \(\left|x+1\right|+2=0\)

\(\left|x+1\right|=0+2\)

\(\Rightarrow\orbr{\begin{cases}x+1=2\\x+1=-2\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x=-3\end{cases}}}\)

19 tháng 2 2019

\(N=\frac{3}{2x^2+6}\)

Ta có: \(x^2\ge0\Rightarrow2x^2+6\ge6\)

\(\Rightarrow N_{Max}=\frac{3}{2x^2+6}=\frac{3}{6}=1,5\)

\(\Leftrightarrow2x^2+6=6\Leftrightarrow x=0\)

2 tháng 9 2018

\(a,\left|3x-1\right|=\left|5-2x\right|\)

\(\Leftrightarrow\orbr{\begin{cases}3x-1=5-2x\\3x-1=2x-5\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}5x=6\\x=-4\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{6}{5}\\x=-4\end{cases}}\)

b,\(\left|2x-1\right|+x=2\)

\(\Leftrightarrow\left|2x-1\right|=2-x\)

Điều kiện \(2-x\ge0\Leftrightarrow x\le2\)

\(\Rightarrow\orbr{\begin{cases}2x-1=2-x\\2x-1=x-2\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}3x=3\\x=-1\end{cases}\Rightarrow\orbr{\begin{cases}x=1\left(\text{nhận}\right)\\x=-1\left(\text{nhận}\right)\end{cases}}}\)

2 tháng 9 2018

c.\(A=0,75-\left|x-3,2\right|\)

Vì \(\left|x-3,2\right|\ge0\Rightarrow0,75-\left|x-3,2\right|\le0,75\)

Dấu "=' xảy ra \(\Leftrightarrow x-3,2=0\Leftrightarrow x=3,2\)

Vậy Max A = 0,75 khi x = 3,2

\(d,B=2.\left|x+1,5\right|-3,2\)

Vì 2. |x + 1,5| ≥ 0 => B ≥ -3,2

Dấu " = ' xảy ra khi \(2\left|x+1,5\right|=0\)

\(\Leftrightarrow x+1,5=0\Leftrightarrow x=-1,5\)

Vậy Min B = -3,2 khi x = -1,5

1 tháng 11 2018

1. a, \(2^{x+2}.3^{x+1}.5^x=10800\)

\(2^x.2^2.3^x.3.5^x=10800\)

\(\Rightarrow\left(2.3.5\right)^x.12=10800\)

\(\Rightarrow30^x=\frac{10800}{12}=900\)

\(\Rightarrow30^x=30^2\)

\(\Rightarrow x=2\)

b,\(3^{x+2}-3^x=24\)

\(\Rightarrow3^x\left(3^2-1\right)=24\)

\(\Rightarrow3^x.8=24\)\(\Rightarrow3^x=3^1\Rightarrow x=1\)

2, c, Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)

Dấu bằng xảy ra khi \(ab\ge0\)

Ta có: \(\left|x-2017\right|=\left|2017-x\right|\)

 \(\Rightarrow\left|x-1\right|+\left|2017-x\right|\ge\left|x-1+2017-x\right|\)\(=\left|2016\right|=2016\)

Dấu bằng xảy ra khi \(\left(x-1\right)\left(2017-x\right)\ge0\)\(\Rightarrow2017\ge x\ge1\)

Vậy \(Min_{BT}=2016\)khi \(2017\ge x\ge1\)

d, Áp dụng BĐT \(\left|a\right|-\left|b\right|\le\left|a-b\right|\forall a,b\inℝ\)

Dấu bằng xảy ra khi \(b\left(a-b\right)\ge0\)

Ta có \(B=\left|x-2018\right|-\left|x-2017\right|\le\left|x-2018-x+2017\right|\)

\(\Rightarrow B\le1\)

Dấu bằng xảy ra khi \(\left(x-2017\right)\left[\left(x-2018\right)-\left(x-2017\right)\right]\ge0\)

\(\Rightarrow x\le2017\)

Vậy \(Max_B=1\) khi \(x\le2017\)

1 tháng 11 2018

để BT \(\frac{5}{\sqrt{2x+1}+2}\) nguyên thì \(\sqrt{2x+1}+2\inƯ\left(5\right)\)

suy ra \(\sqrt{2x+1}+2\in\left\{-5;-1;1;5\right\}\)

\(\Rightarrow\sqrt{2x+1}\in\left\{-7;-3;-1;3\right\}\)

Mà \(\sqrt{2x+1}\ge0\) nên \(\sqrt{2x+1}\)chỉ có thể bằng 3

\(\Rightarrow2x+1=9\Rightarrow x=4\)( thỏa mãn điều kiện \(x\ge-\frac{1}{2}\))

Đây là cách lớp 9. Mk đang phân vân ko biết giải theo cách lớp 7 thế nào!!!!

21 tháng 4 2018

a) Để \(P_{\left(x\right)}\in z\)

\(\Rightarrow\frac{2}{4-x}\in z\)

\(\Rightarrow2⋮4-x\Rightarrow4-x\inƯ_{\left(2\right)}=\left(2;-2;1;-1\right)\)

nếu 4-x = 2 => x=2 (TM)

      4-x  = -2 => x = 6 (TM)

      4-x  = 1 => x=3 (TM) 

     4 -x  = -1 => x = 5 (TM)

KL: x = ....

b) ta có: \(\frac{3x+9}{x-4}=\frac{3x-12+21}{x-4}=\frac{3.\left(x-4\right)+21}{x-4}=\frac{3.\left(x-4\right)}{x-4}+\frac{21}{x-4}=3+\frac{21}{x-4}\)

để A(x) nhận giá trị nguyên

\(\Rightarrow\frac{21}{x-4}\in z\)

\(\Rightarrow21⋮x-4\Rightarrow x-4\inƯ_{\left(21\right)}=\left(1;-1;3;-3;7;-7\right)\)

nếu x -4 = 1 => x= 5 (TM)

     x -4  = -1 => x = 3 ( TM)

  x -4    = 3 => x = 4 (TM)

  x -4   = -3 => x = 1 (TM)

   x  - 4 = 7 => x=11 (TM)

  x - 4   = -7 => x = -3 (TM)

KL: x= ....

c) ta có: \(\frac{6x+5}{2x+1}=\frac{6x+3+2}{2x+1}=\frac{3.\left(2x+1\right)+2}{2x+1}=\frac{3.\left(2x+1\right)}{2x+1}+\frac{2}{2x+1}\)

Để B(x) nhận giá trị nguyên

\(\Rightarrow\frac{2}{2x+1}\in z\)

\(\Rightarrow2⋮2x+1\Rightarrow2x+1\inƯ_{\left(2\right)}=\left(2;-2;1;-1\right)\)

nếu 2x + 1 = 2 => 2x = 1 => x =1/2 ( loại)

      2x +1  = -1 => 2x = -2 => x = -1 (TM)

     2x +1   = -2 => 2x = -3 => x = -3/2 ( loại)

    2x +1  = 1 => 2x = 0 => x =0 (TM)

KL: x =...

d) ta có: \(\frac{5-x}{x-2}=\frac{-x+5}{x-2}=\frac{-\left(x-2\right)+3}{x-2}=\frac{-\left(x-2\right)}{x-2}+\frac{3}{x-2}=\left(-1\right)+\frac{3}{x-2}\)

Để E(x) nhận giá trị nguyên

\(\Rightarrow\frac{3}{x-2}\inℤ\)

\(\Rightarrow3⋮x-2\Rightarrow x-2\inƯ_{\left(3\right)}=\left(3;-3;1;-1\right)\)

nếu x -2 = 3 => x =5 (TM)

    x -2   = -3 => x = -1 (TM)

   x -2    = 1 => x =3 (TM)

   x -2   = -1 => x = 1 (TM)

KL: x= ....

15 tháng 4 2019

a) \(\begin{cases}\left(x+2\right)^2\ge0\\\left(y-\frac{1}{5}\right)^2\ge0\end{cases}\Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2\ge0\)

\(\Leftrightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2-10\ge0-10=-10\)hay \(C\ge-10\)

Dấu "=" xảy ra khi:

\(\hept{\begin{cases}\left(x+2\right)^2=0\\\left(y-\frac{1}{5}\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+2=0\\y-\frac{1}{5}=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-2\\y=\frac{1}{5}\end{cases}}}\)

Vậy GTNN C là -10 khi \(\hept{\begin{cases}x=-2\\y=\frac{1}{5}\end{cases}.}\)

b)\(\left(2x-3\right)^2\ge0\Rightarrow\left(2x-3\right)^2+5\ge0+5=5\)

\(\Rightarrow\frac{4}{\left(2x-3\right)^2-5}\le\frac{4}{5}\Leftrightarrow D\le\frac{4}{5}\)

Dấu "=" xảy ra khi:

\(\left(2x-3\right)^2=0\Rightarrow2x-3=0\Rightarrow2x=3\Rightarrow x=\frac{3}{2}\)

Vậy GTLN D là \(\frac{4}{5}\)khi \(x=\frac{3}{2}.\)

17 tháng 4 2019

thank bạn nha

5 tháng 8 2018

a)\(A=12-\left|x-3\right|-\left|y+7\right|\)

\(-\left|x-3\right|\le0;-\left|y+7\right|\le0\)

\(\Rightarrow A\le12-0-0=12\)

Vậy Max A = 12 <=> x = 3 ; y = -7

b)\(B=-\left(x-2018\right)^6-1\)

\(-\left(x-2018\right)^6\le0\)

\(B\le0-1=-1\)

Vậy Max B = -1 <=> x = 2018

5 tháng 8 2018

a)  \(A=12-\left|x-3\right|-\left|y+7\right|\)

Nhận thấy: \(\left|x-3\right|\ge0;\)\(\left|y+7\right|\ge0\)

suy ra:  \(A=12-\left|x-3\right|-\left|y+7\right|\le12\)

Vậy MIN A = 12

Dấu "=" xảy ra <=> \(x=3;y=-7\)

b) \(B=-\left(x-2018\right)^6-1\)

Nhận thấy:  \(\left(x-2018\right)^6\ge0\)

suy ra:  \(B=-\left(x-2018\right)^2-1\le-1\)

Vậy MIN B = -1

Dấu "=" xảy ra  <=>   \(x=2018\)

c) \(C=\frac{20}{7}-\left|x+8\right|-\left(3y+7\right)^{2016}\)

Nhận thấy:  \(\left|x+8\right|\ge0\)    \(\left(3y+7\right)^{2016}\ge0\)

suy ra:  \(C=\frac{20}{7}-\left|x+8\right|-\left(3y+7\right)^{2016}\le\frac{20}{7}\)

Vậy MIN  C = 20/7

Dấu "=" xảy ra <=>  \(x=-8;y=-\frac{7}{3}\)