K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2019

A = 5x(x - y) - y(5x - y)

A = 5x2 - 5xy - 5xy + y2

A = 5x2 - 10xy + y2 (1)

Thay x = -1; y = 3 vào (1), ta có:

5.(-1)2 - 10.(-1).3 + 32 = 44

B = 4y(x2 - 3xy + 3y2) - 2xy(2x - 6y - 3)

B = 4x2y - 12x2 + 12y3 - 4x2y + 12xy2 + 6xy

B = 12y3 + 6xy (1)

Thay x = 5; y = -1 vào (1), ta có:

12.(-1)3 + 6.5.(-1) = -42

C = 5x2(x - y2) + 3x(xy- y) - 5x3 

C = 5x3 - 5x2y2 + 3x2y2 - 3xy - 5x3 

C = -2x2y2 - 3xy (1)

Thay x = -2; y = -5 vào (1), ta có:

-2.(-2)2.(-5)2 - 3.(-2).(-5) = -230

D = 6x2(y- xy + 2x2y) - 3xy(2xy - x+ 4x3)

D = 6x2y2 - 6x3y + 12x4y - 6x2y2 + 3x3y - 12x4y

D = -3x3y (1)

Thay x = 11; y = -1 vào (1), ta có:

-3.113.(-1) = 3993

10 tháng 7 2018

\(A=3\left(x-3\right)^2+\left(y-1\right)^2+2005\)

Nhận xét: \(\left(x-3\right)^2\ge0\forall x\)\(\Rightarrow3\left(x-3\right)^2\ge0\forall x\)

                \(\left(y-1\right)^2\ge0\forall y\)

\(\Rightarrow3\left(x-3\right)^2+\left(y-1\right)^2\ge0\forall x,y\)

\(\Rightarrow3\left(x-3\right)^2+\left(y-1\right)^2+2005\ge2005\forall x,y\)

Vậy \(minA=2005\)khi   \(3\left(x-3\right)^2=0\)\(\Rightarrow x-3=0\)\(\Rightarrow x=3\)

                                                 \(\left(y-1\right)^2=0\)\(\Rightarrow y-1=0\)\(\Rightarrow y=1\)

KL: Vậy \(minA=2005\) khi  \(x=3;y=1\)

\(B=\left(x^2-9\right)^2+|y-2|-1\)

Nhận xét:  \(\left(x^2-9\right)^2\ge0\forall x\)

                  \(|y-2|\ge0\forall y\)

\(\Rightarrow\left(x^2-9\right)^2+|y-2|\ge0\forall x,y\)

\(\Rightarrow\left(x^2-9\right)^2+|y-2|-1\ge-1\forall x,y\)

Vậy \(minB=-1\)khi   \(\left(x^2-9\right)^2=0\)\(\Rightarrow x^2-9=0\)\(\Rightarrow x^2=9\)\(\Rightarrow x=3\)

                                              \(|y-2|=0\)\(\Rightarrow y=2\)

KL: Vậy \(minB=-1\) khi  \(x=3;y=2\)

\(C=x^2-2x+5\)

\(\Rightarrow C=x^2-2x+1+4\)

\(\Rightarrow C=\left(x-1\right)^2+4\)

Nhận xét: \(\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-1\right)^2+4\ge4\forall x\)

Vậy  \(minB=4\) khi  \(\left(x-1\right)^2=0\)\(\Rightarrow x-1=0\)\(\Rightarrow x=1\)

KL: Vậy \(minB=4\) khi  \(x=1\)

         

27 tháng 3 2020

a) Ta có: \(\left(x+1\right)^2\ge0\forall x\)

\(\Rightarrow A=\left(x+1\right)^2-3\ge-3\)

Dấu " = " xảy ra khi 

\(\left(x+1\right)^2=0\)

\(x+1=0\)

\(x=-1\)

Vậy \(x=-1\)khi \(GTNN=-3\)

B:C: tương tự

d) Ta có: \(\left(2x-1\right)^{18}\ge0\forall x\)

              \(\left(y+2\right)^2\ge0\forall y\)

\(\Rightarrow D=\left(2x-1\right)^{18}+\left(y+2\right)^2+7\ge7\)

Dấu " = " xảy ra khi \(\hept{\begin{cases}\left(2x-1\right)^{18}=0\\\left(y+2\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}2x-1=0\\y+2=0\end{cases}\Rightarrow}\hept{\begin{cases}2x=1\\y=-2\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{1}{2}\\y=-2\end{cases}}}\)

Vậy \(x=\frac{1}{2};y=-2\)khi \(GTNN=7\)

e) \(\left|-2x+6\right|\ge0\)

\(\Rightarrow E=\left|-2x+6\right|+12\ge12\)

Dấu " = " xảy ra khi \(\left|-2x+6\right|=0\Rightarrow-2x=-6\Rightarrow x=3\)

Vậy x = 3 khi đạt GTNN = 12

F ; G tương tự

hok tốt!!

27 tháng 3 2020

+) A=(x+1)2 - 3  

Vì  (x+1)2 \(\ge\)0 nên (x+1)2 - 3 \(\ge\) - 3 .Dấu "=" xảy ra \(\Leftrightarrow\)(x+1)2 = 0   \(\Leftrightarrow\)x = - 1

Vậy min A = - 3 khi x = -1

+) B=(2x-5)20 + 9  

Vì (2x-5)20 \(\ge\)0 nên (2x-5)20+9\(\ge\)9.Dấu "=" xảy ra \(\Leftrightarrow\)(2x - 5)20=0    \(\Leftrightarrow\)x=\(\frac{5}{2}\)

Vậy min B=9 khi x=\(\frac{5}{2}\)

Những phần khác cũng làm tương tự :

+) minC= - 5 khi x=\(\frac{4}{3}\)

+) minD= 7 khi x=\(\frac{1}{2}\)và y= - 2

+) minE=12 khi x=3

+) min F = -17 khi x=5

+) min G = -12 khi x= - 4

12 tháng 1 2017

a) 0

b)-3

c)-1