K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2019

\(M=x^{2y^3}+x^{3y^2}-x^2+y^2+5-\left(x^{2y^3}+x^{3y^2}+2y^2-1\right)\)

\(\Rightarrow M=x^{2y^3}+x^{3y^2}-x^2+y^2+5-x^{2y^3}-x^{3y^2}-2y^2+1\)

\(\Rightarrow M=-x^2+y^2-2y^2+6\)

\(\Rightarrow M=-x^2-y^2+6\)

Có \(-x^2\le0;-y^2\le0\)

\(\Rightarrow M\le0+0+6=6\)

Vậy GTLN = 6 <=> x = 0;y=0

24 tháng 2 2019

Ta có:

M=(x^2y^3+x^3y^2-x^2+y^2+5)-(x^2y^3+x^3y^2+2y^2-1)

   =x^2y^3+x^3y^2-x^2+y^2+5-x^2y^3-x^3y^2-2y^2+1

   =(x^2y^3-x^2y^3)+(x^3y^2-x^3y^2)-x^2+(y^2-2y^2)+(5+1)

   =-x^2-y^2+6

   =-(x^2+y^2)+6

Vì \(x^2\ge0;y^2\ge0\)\(\Rightarrow\) \(x^2+y^2\ge0\)nên \(-\left(x^2+y^2\right)\le0\)

Vậy giá trị lớn nhất của biểu thức bằng 6 khi -(x^2+y^2)=0.

Chắc chắn đúng, t**k mik nhé!

24 tháng 2 2019

\(x,y\inℤ\)phải không?

Ta có:

\(\left(x^2y^2+4x^2+2y^2-4\right)-\left(x^2y^2+5x^2+y^2-3\right)=0\)\(=0\)

\(\Rightarrow x^2y^2+4x^2+2y^2-4-x^2y^2-5x^2-y^2+3=0\) (bỏ ngoặc đổi dấu)

\(\Rightarrow\left(x^2y^2-x^2y^2\right)+\left(4x^2-5x^2\right)+\left(2y^2-y^2\right)+\left(-4+3\right)=0\)

\(\Rightarrow0-x^2+y^2-1=0\)

\(\Rightarrow y^2-x^2=1\)

\(\Rightarrow\left(y-x\right)\left(y+x\right)=1\)

Vậy ta có

\(\left(y-x\right)=1;\left(y+x\right)=1\)\(\Rightarrow y=1;x=0\)

Hoặc \(\left(y-x\right)=-1;\left(y+x\right)=-1\)\(\Rightarrow y=-1;x=0\)

Vậy ...

(Không biết đúng không nữa, nếu thấy đúng thì t***k mik nhé!)