\(-\left(x+81\right)^2+2016\)

Giải đầy đủ 3 like...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2016

Ta có: (x+81)≥0 (do bình phương 1 số luôn luôn lớn hơn hoặc bằng 0 vd: (-8)2=64)

<=> -(x+81)2≤ 0 ( đổi dấu do mang dấu - trước biểu thức )

<=> -(x+81)2 + 2016 ≤  2016

Dấu "=" xảy ra khi và chỉ khi x+81=0 <=> x=-81

Vậy giá trị lớn nhất của -(x+81)+ 2016 là 2016 <=> x=-81

Mình giải theo phương pháp lớp 7 nên ko chắc bạn có hiểu hay ko?

Mình trình bày theo trình tự đúng như ở lớp 7 có gì sau này bạn có thể làm theo trình tự đó!!!

18 tháng 2 2016

= 2016 chắc chắn 100%

18 tháng 2 2016

Bạn à toán tìm cực trị ( tìm GTLN, GTNN, GTTĐ ) ko có trong chương trình toán 6 đâu.

Tìm cực trị chỉ có cách đơn giản nhất như câu trả lời cũ của mình thôi.

Bạn có thể kiểm chứng trên mạng bằng cách gõ: tìm giá trị lớn nhất, giá trị nhỏ nhất

5 tháng 8 2018

Ta có :  A = | x - 3 | + 10 > 0

           Vì  | x - 3 |\(\ge\)0

Dấu = Xảy ra <=> x = 3

Vậy gtnn của A = 10 <=> x = 3

5 tháng 8 2018

Vì \(\left|x-3\right|\ge0\left(\forall x\right)\)

\(\Rightarrow A=\left|x-3\right|+10\ge10\)

Dấu "=" xảy ra \(\Leftrightarrow\left|x-3\right|=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)

Vậy Amin =10 khi và chỉ khi x = 3

Vì \(\left(x-1\right)^2\ge0\left(\forall x\right)\Rightarrow B=-7+\left(x-1\right)^2\ge-7\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)

Vậy Bmin = -7 khi và chỉ khi x = 1

Vì \(\left|x-2\right|\ge0\left(\forall x\right)\Rightarrow C=-3-\left|x-2\right|\le-3\)

Dấu "=" xảy ra \(\Leftrightarrow\left|x-2\right|=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)

Vậy Cmax = -3 khi và chỉ khi x = 2

Vì \(\left(x-2\right)^2\ge0\left(\forall x\right)\Rightarrow15-\left(x-2\right)^2\le15\)

Dấu "=" xảy ra \(\Leftrightarrow x-2=0\Leftrightarrow x=2\)

Vậy Dmax = 15 khi và chỉ khi x = 2

9 tháng 3 2020

Ta có \(|x-5|\ge0;\forall x\Rightarrow|x-5|+25\ge25;\forall x\Rightarrow A\ge25,\forall x\)

GTNN của A là 25 khi và chỉ khi x=5

\(\left(x-2\right)^2\ge0;\forall x\Rightarrow\left(x-2\right)^2-16\ge-16;\forall x\Rightarrow B\ge-16,\forall x\)

GTNN của B là -16 khi x=2

b) \(|x+3|\ge0;\forall x\Rightarrow-|x+3|-5\le-5;\forall x\Rightarrow C\le-5,\forall x\)

GTLN của C là -5 khi và chỉ khi x=-3

\(\left(x+1\right)^2\ge0;\forall x\Rightarrow-\left(x+1\right)^2\le0;\forall x\Rightarrow D\le14,\forall x\)

GTLN của D là 14 khi và chỉ khi x = -1

9 tháng 3 2020

a, Tìm giá trị nhỏ nhất của biểu thức:

A = \(|x-5|+25\)

Để A nhỏ nhất \(\Rightarrow\)\(|x-5|+25\)nhỏ nhất 

\(\Rightarrow\)\(|x-5|\)nhỏ nhất 

Mà  \(|x-5|\)\(\ge0\forall x\inℤ\)

\(\Rightarrow\) \(|x-5|\)\(=0\)                                (1)

Thay (1) vào A, ta có:

A = 0 + 25

A = 25

Vậy giá trị nhỏ nhất của A là 25

\(B=-16+\left(x-2\right)^2\)

Để B nhỏ nhất \(\Rightarrow\)\(-16+\left(x-2\right)^2\)nhỏ nhất

\(\Rightarrow\left(x-2\right)^2\)nhỏ nhất

Mà \(\left(x-2\right)^2\)\(\ge0\forall x\inℤ\)

\(\Rightarrow\left(x-2\right)^2\)\(=0\)                                   (2)

Thay (2) vào B, ta có :

B =  \(-16+0\)

B = \(-16\)

Vậy giá trị nhỏ nhất của B là -16

7 tháng 5 2017

\(A=\frac{3n^2+25}{n^2+5}=\frac{3n^2+15}{n^2+5}+\frac{10}{n^2+5}=\frac{3\left(n^2+5\right)}{n^2+5}+\frac{10}{n^2+5}=3+\frac{10}{n^2+5}\)

Vì \(n^2\ge0\Rightarrow n^2+5\ge5\Rightarrow\frac{10}{n^2+5}\le2\Rightarrow A=3+\frac{10}{n^2+5}\le5\)

=>Amax=5 <=> n2=0 <=> n=0

Vậy GTLN của A là 5 tại n=0

7 tháng 5 2017

A=3n2+25/n2+5

a=3(n2+5)+20/n2+5

           20

a=3                           

       n2+5

thuộc U của  20 {1,2,4,5,,10,20}

thay n2=12+5=6

thay n2=2

tiep theo thay =4,=5,=10,=20 nha bn

19 tháng 2 2016

ax-ay+bx-by=a.(x-y)+b(x-y)=(a+b)(x-y)=(x-y)(a+b)           (1)

thay vào (1) ta có:-4x15=-60

4 tháng 8 2017

a, A =I x - 3I +10

\(\Rightarrow A\ge10\)( I x - 3 I luôn lớn hơn hoặc  bằng 0 vs mọi x)

Dấu ''='' xảy ra khi x-3=0

                       <=>x = 3

Vậy giá trị nhỏ nhất của A là 10 khi x = 3

b, \(B=-7+\left(x-1\right)^2\)

\(\Rightarrow B\ge-7\forall x\)

Dấu ''='' xảy ra khi và chỉ khi \(x-1=0\Leftrightarrow x=1\)

Vậy giá trị nhỏ nhất của B là -7 khi x=1

c, C= -3 - I x -2I

\(\Rightarrow C\le-3\)( Vì I x - 2 I luôn luôn lớn hơn hoặc bằng 0 với mọi x)

Dấu ''='' xảy ra khi và chỉ khi : x - 2 = 0 <=> x=2 

Vây giá trị lớn nhất của C là - 3 khi x = 2.

d, \(D=15-\left(x-2\right)^2\)

\(\Rightarrow D\le15\)

Dấu ''='' xảy ra khi và chỉ khi : x - 2 =0 <=> x =2

Vây giá trị lớn nhất của D là 15 khi x = 2

4 tháng 4 2018

Để A có GTLN thì 3(2x-1)^2 nho nhất

mà 5-3(2x-1)^2 nên 3(2x-1)^2=0 ma x=1/2

với 3(2x-1)^2=3thi x=1

giá trị lớn nhất là 5-3(2x1-1)^2=2

Vay....

1 tháng 12 2017
A)x=(7;6;5;4;3;2;1;0;-1;-2;-3;-4;-5;-6;-7)