\(A=-x^2-3y^2-2xy+10x+14y-18\). Lúc đó, giá trị c...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4 2018

\(A=-x^2-3y^2-2xy+10x+14y-18\\ =-x^2-y^2-2y^2-2xy+10x+10y+4y-25-2+9\\ =-\left(x^2+y^2+25+2xy-10x-10y\right)-\left(2y^2-4y+2\right)+9\\ \\ =-\left(x+y-5\right)^2-2\left(y^2-2y+1\right)+9\\ =-\left(x+y-5\right)^2-2\left(y-1\right)^2+9\)Do \(-\left(x+y-5\right)^2\le0\forall x;y\)

\(-2\left(y-1\right)^2\le0\forall y\)

\(\Rightarrow-\left(x+y-5\right)^2-2\left(y-1\right)^2\le0\forall x;y\)

\(\Rightarrow A=-\left(x+y-5\right)^2-2\left(y-1\right)^2+9\le9\forall x\)

Dấu "='' xảy ra khi: \(\left\{{}\begin{matrix}-\left(x+y-5\right)^2=0\\-2\left(y-1\right)^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y-5=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=5-y\\y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=1\end{matrix}\right.\)

Vậy \(A_{\left(Max\right)}=9\) khi \(\left\{{}\begin{matrix}x=4\\y=1\end{matrix}\right.\)

28 tháng 4 2019

\(A=\left(-x^2-2xy-y^2\right)-2y^2+\left(10x+10y\right)+4y-18\)

\(=-\left(x+y\right)^2+2\left(x+y\right).5-\left(2y^2-4y+2\right)-16\)

\(=-\left[\left(x+y\right)^2-2\left(x+y\right).5+5^2\right]-2\left(y-1\right)^2+9\)

\(=-\left(x+y-5\right)^2-2\left(y-1\right)^2+9\le9\forall x;y\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x+y-5=0\\y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=5-y\\y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=1\end{cases}}\)

Vậy \(A_{max}=9\Leftrightarrow\hept{\begin{cases}x=4\\y=1\end{cases}}\)

14 tháng 4 2020

ko biết

19 tháng 4 2019

A = -x2 - 3y2 - 2xy + 10x + 14y - 18

A = -x2 - y2 -25 + 10x +10y -2xy -2y2 + 4y -2 + 9

A = -(x2 + y2 + ( -5 )2 - 10x - 10y + 2xy ) - 2 (y2 - 2y + 1 )  + 9

A = -( x + y - 5 )2 - 2 ( y - 1 )2 + 9 

-( x + y - 5 )2  \(\le\)0 ; - 2 ( y - 1 )2 \(\le\)0

\(\Rightarrow\)A  \(\le\)0 + 0 + 9 = 9

Dấu " = " xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}x+y-5=0\\y-1=0\end{cases}\Rightarrow\hept{\begin{cases}x=4\\y=1\end{cases}}}\)

14 tháng 4 2020

gợi ý nhé:

[-(x-y)2-10(x-y)-25] - 2(y-1)+ 2010

= -[(x-y)+5]2  - 2(y-1)+ 2010

tự cậu suy ra MAX nhé

chưa hiểu thì hỏi nhé

-2A=2x2+6y2+4xy-20x-28y+36

=(x2+4xy+4y2)+(x2-20x+100)+2(y2-14y+49)-162

=(x+2y)2+(x-10)2+2(y-7)2-162\(\ge\)-162

=> A\(\le81\)

Dấu "=" xảy ra khi

NV
3 tháng 5 2019

\(A=-\left(x^2+y^2+25+2xy-10x-10y\right)-2y^2+4y-2+9\)

\(A=-\left(x+y-5\right)^2-2\left(y-1\right)^2+9\le9\)

\(\Rightarrow A_{max}=9\) khi \(\left\{{}\begin{matrix}y=1\\x=4\end{matrix}\right.\)

\(A_{min}\) không tồn tại

22 tháng 10 2021

\(1,a,A=x^2-6x+25\)

\(=x^2-2.x.3+9-9+25\)

\(=\left(x-3\right)^2+16\)

Ta có :

\(\left(x-3\right)^2\ge0\)Với mọi x

\(\Rightarrow\left(x-3\right)^2+16\ge16\)

Hay \(A\ge16\)

\(\Rightarrow A_{min}=16\)

\(\Leftrightarrow x=3\)

22 tháng 10 2021

\(b,B=4x^2+4x-2\)

\(B=4x^2+4x+1-3\)

\(B=\left(4x^2+4x+1\right)-3\)

\(B=\left(2x+1\right)^2-3\)

Ta có : 

\(\left(2x+1\right)^2\ge0\)với mọi x

\(\Rightarrow\left(2x+1\right)^2-3\ge-3\)

\(\Leftrightarrow B\ge-3\)

\(\Rightarrow B_{min}=-3\)

\(\Leftrightarrow x=-\frac{1}{2}\)

a/ giá trị nhỏ nhất của A  là 2

b/ giá trị lớn nhất của B là 51

2 tháng 8 2021

tớ chỉ có bài tham khảo trên mạng thôi bạn thông cảm

Ta có: x + y = 1
   <=> (x + y)3 = 1
   <=> x3 + y3 + 3xy(x + y) = 1
   <=> x3 + y3 + 3xy = 1 (do x + y = 1)
   <=> x3 + y3 = 1 - 3xy
Áp dụng BĐT Cô - si, ta có:
   xy >= (x+y)24=14(x+y)24=14
<=> -3xy≥−34≥−34
Ta có x3 + y3 = 1 - 3xy ≥1−34=14≥1−34=14
Dấu "=" xảy ra khi x = y = 1212
Vậy GTNN của x3 + y3 là 1414khi x =  y = 12

20 tháng 7 2016
Ai cứu mình với TToTT