Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=(2x-3)2+7
Vì (2x-3)2 \(\ge\) 0 với mọi x
=>(2x-3)2+7 \(\ge\) 7 với mọi x
=>AMin=7
Dấu "=" xảy ra<=>2x-3=0<=>x=3/2
B=15-|2x+1|
Vì |2x+1| \(\ge\) 0 với mọi x => -|2x+1| \(\le\) 0 với mọi x
=>15-|2x+1| \(\le\) 15 với mọi x
=>BMax=15
Dấu "=" xảy ra<=>2x+1=0<=>x=-1/2
\(C=\frac{6}{\left(3x+2\right)^2+18}\)
C lớn nhất <=> (3x+2)2+18 nhỏ nhất
Vì (3x+2)2+18 \(\ge\) 18 với mọi x
=>\(C\le\frac{6}{18}=\frac{1}{3}\)
=>CMax=1/3
Dấu "=" xảy ra <=> 3x+2=0<=>x=-2/3
D=(x2+2)2-21
Vì x2+2 \(\ge\) 2 với mọi x
=>(x2+2)2 \(\ge\) 22=4 với mọi x
=>(x2+2)2-21 \(\ge\) 4-21=-17 với mọi x
=>DMin=-17
Dấu "=" xảy ra<=>x=0
Giá trị lớn nhất:
a) A=1
b) B=2015
Giá trị nhỏ nhất:
a) A=-1
b) B=-2
\(a.A=\left|x-3\right|+10\)
\(A=\left|x-3\right|+10\ge10\)
\(MinA=10\Leftrightarrow x-3=0\Rightarrow x=3\)
\(B=-7+\left(x-1\right)^2\)
\(B=\left(x-1\right)^2-7\ge-7\)
\(MinB=-7\Leftrightarrow x-1=0\Rightarrow x=1\)
\(b.C=-3-\left|x+2\right|\)
\(C=-\left|x+2\right|-3\le-3\)
\(MaxC=-3\Leftrightarrow x+2=0\Rightarrow x=-2\)
\(D=15-\left(x-2\right)^2\)
\(D=-\left(x-2\right)^2+15\le15\)
\(MaxD=15\Leftrightarrow x-2=0\Rightarrow x=2\)
1.
Ta thấy $(x-13)^2\geq 0$ với mọi $x$
$\Rightarrow T=(x-13)^2-26\geq 0-26=-26$
Vậy GTNN của $T$ là $-26$.
Giá trị này đạt tại $x-13=0\Leftrightarrow x=13$
2.
Ta thấy: $(x-14)^2\geq 0$ với mọi $x$
$\Rightarrow M=20-(x-14)^2\leq 20-0=20$
Vậy $M_{\max}=20$. Giá trị này đạt tại $x-14=0$
Hay $x=14$.
Sửa đề:
A=/x+5/+10
Ta có: /x+5/>= 0 với mọi x>=0
=> A=/x+5/+10 >= 10
=> Amin=10. Dấu "=" xảy ra <=> x+5=0<=> x=-5
Vậy...
\(\text{a) }A=\left|x+5\right|+10\)
\(\text{Vì }\left|x+5\right|\ge0\forall x\)
\(\Rightarrow A=\left|x+5\right|+10\ge10\)
\(\text{Dấu ''='' xảy ra khi :}\)
\(\left|x+5\right|=0\)
\(\Rightarrow x=-5\)
\(\text{Vậy Min}_A=10\Leftrightarrow x=-5\)
\(\text{b) }\left|3-x\right|+5\)
\(\text{Vì }\left|3-x\right|\ge0\forall x\)
\(\Rightarrow\left|3-x\right|+5\ge5\)
\(\text{Dấu ''='' xảy ra khi :}\)
\(\left|3-x\right|=0\)
\(\Rightarrow x=3\)
\(\text{Vậy Min}_B=5\Leftrightarrow x=3\)
\(\text{d) }D=\left(x+2\right)^2+15\)
\(\text{Vì ( x + 2 )}^2\ge0\forall x\)
\(\Rightarrow\left(x+2\right)^2+15\ge15\)
\(\text{Dấu ''='' xảy ra khi :}\)
\(\left(x+2\right)^2=0\)
\(\Rightarrow x+2=0\)
\(\Rightarrow x=-2\)