K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 1 2017

Bắt quả tang dũng nhá!~

12 tháng 2 2018

Bài j mà dễ v~ !

3 tháng 10 2018

dễ thì bạn làm đi chớ

29 tháng 3 2020

*) Ta có (x+2)2 \(\ge0\forall x\)

\(\Rightarrow5-\left(x+2\right)^2\ge5\)hay \(D\ge5\)

Dấu "=" <=> (x+2)2=0

<=> x=-2

Vậy MaxD=5 đạt được khi x=-2

*) Ta có \(\left(2-y\right)^4\ge0\forall y\)

\(\Rightarrow6-3\left(2-y\right)^4\ge6\forall y\)

hay \(E\ge6\)

Dấu "=" <=> \(\left(2-y\right)^2=0\)

<=> y=2

Vậy MaxE=6 đạt đươc kho y=2

30 tháng 3 2020

*) Ta có \(\left(x+2\right)^2\ge0\forall x\in Z\)

=> \(5-\left(x+2\right)^2\ge5-0=5\)hay D \(\ge5\)

Dấu "=" xảy ra <=> (x+2)2=0

<=> x+2=0

<=> x=-2

Vậy \(Max_D=5\)đạt được khi x=-2

*) Ta có: \(\left(2-y\right)^4\ge0\forall y\inℤ\)

=> \(3\left(2-y\right)^4\ge0\forall y\inℤ\)

=> 6-3(2-y)4 \(\ge\)6-0=6 

hay E \(\ge6\). Dấu "=" xảy ra <=> 3(2-y)4=0

<=> (2-y)4=0

<=> 2-y=0

<=> y=2

vậy MaxE=6 đạt được khi y=2

AH
Akai Haruma
Giáo viên
28 tháng 7 2024

1.

Ta thấy $(x-13)^2\geq 0$ với mọi $x$

$\Rightarrow T=(x-13)^2-26\geq 0-26=-26$

Vậy GTNN của $T$ là $-26$.

Giá trị này đạt tại $x-13=0\Leftrightarrow x=13$

AH
Akai Haruma
Giáo viên
28 tháng 7 2024

2.

Ta thấy: $(x-14)^2\geq 0$ với mọi $x$

$\Rightarrow M=20-(x-14)^2\leq 20-0=20$

Vậy $M_{\max}=20$. Giá trị này đạt tại $x-14=0$

Hay $x=14$.

29 tháng 1 2019

Sửa đề:

A=/x+5/+10

Ta có: /x+5/>= 0 với mọi x>=0

=> A=/x+5/+10 >= 10

=> Amin=10. Dấu "=" xảy ra <=> x+5=0<=> x=-5

Vậy...

29 tháng 1 2019

\(\text{a) }A=\left|x+5\right|+10\)

\(\text{Vì }\left|x+5\right|\ge0\forall x\)

\(\Rightarrow A=\left|x+5\right|+10\ge10\)

\(\text{Dấu ''='' xảy ra khi :}\)

\(\left|x+5\right|=0\)

\(\Rightarrow x=-5\)

\(\text{Vậy Min}_A=10\Leftrightarrow x=-5\)

\(\text{b) }\left|3-x\right|+5\)

\(\text{Vì }\left|3-x\right|\ge0\forall x\)

\(\Rightarrow\left|3-x\right|+5\ge5\)

\(\text{Dấu ''='' xảy ra khi :}\)

\(\left|3-x\right|=0\)

\(\Rightarrow x=3\)

\(\text{Vậy Min}_B=5\Leftrightarrow x=3\)

\(\text{d) }D=\left(x+2\right)^2+15\)

\(\text{Vì ( x + 2 )}^2\ge0\forall x\)

\(\Rightarrow\left(x+2\right)^2+15\ge15\)

\(\text{Dấu ''='' xảy ra khi :}\)

\(\left(x+2\right)^2=0\)

\(\Rightarrow x+2=0\)

\(\Rightarrow x=-2\)

29 tháng 1 2020

a) \(A=\left(x+4\right)^2+\left|y-5\right|-7\)

Ta thấy : \(\left(x+4\right)^2\ge0\)

                 \(\left|y-5\right|\ge0\)

\(\Rightarrow\left(x+4\right)^2+\left|y-5\right|-7\ge-7\)

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x+4\right)^2=0\\\left|y-5\right|=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=-4\\y=5\end{cases}}\)

Vậy \(minA=-7\Leftrightarrow\hept{\begin{cases}x=-4\\y=5\end{cases}}\)

b) \(B=\left(x-4\right)^2+\left|y-5\right|+9\)

Ta thấy : \(\left(x-4\right)^2\ge0\)

                \(\left|y-5\right|\ge0\)

\(\Rightarrow\left(x-4\right)^2+\left|y-5\right|+9\ge9\)

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-4\right)^2=0\\\left|y-5\right|=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=4\\y=5\end{cases}}\)

Vậy \(minB=9\Leftrightarrow\hept{\begin{cases}x=4\\y=5\end{cases}}\)