Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=-2x^2-10y+4xy+4x+4y+2013\)
\(A=-\left(2x^2+10y^2-4xy-4x-4y-2013\right)\)
\(A=-\left(x^2+x^2+y^2+9y^2+2xy-6xy-4x-4y-2013\right)\)
\(A=-\left[\left(x^2+2xy+y^2\right)-4\left(x+y\right)+4+\left(3y\right)^2-2\cdot3y\cdot x+x^2-2017\right]\)
\(A=-\left[\left(x+y\right)^2-2\cdot\left(x+y\right)\cdot2+2^2+\left(3y-x\right)^2-2017\right]\)
\(A=-\left[\left(x+y\right)^2+\left(3y-x\right)^2-2017\right]\)
\(A=2017-\left(x+y\right)^2-\left(3y-x\right)^2\)
\(A=2017-\left[\left(x+y\right)^2-\left(3y-x\right)^2\right]\le2017\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y=0\\3y-x=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=0\\3y=x\end{cases}}\Leftrightarrow\hept{\begin{cases}3y+y=0\\x+y=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=0\\x=0\end{cases}}}\)
\(A=-2x^2-10y^2+4xy+4x+4y+2013\)
\(=-2\left(x-y\right)^2+4\left(x-y\right)-2-8y^2+8y-2+2017\)
\(=-2\left[\left(x-y\right)^2-2\left(x-y\right)+1\right]-8\left(y^2-y+\frac{1}{4}\right)+2017\)
\(=-2\left(x-y-1\right)^2-8\left(y-\frac{1}{2}\right)^2+2017\le2017\forall x;y\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}x-y-1=0\\y-\frac{1}{2}=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{3}{2}\\y=\frac{1}{2}\end{cases}}}\)
Vậy GTLN của A là 2017 khi \(x=\frac{3}{2}\)và \(y=\frac{1}{2}\)
Chúc bạn học tốt.
Sửa đề:
\(C=x^2-4xy+5y^2-10y+6\)
\(C=\left(x^2-4xy+4y^2\right)+\left(y^2-10y+25\right)-19\)
\(C=\left(x-2y\right)^2+\left(y-5\right)^2-19\ge-19\left(\forall x,y\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x-2y\right)^2=0\\\left(y-5\right)^2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=2y\\y=5\end{cases}}\Rightarrow\hept{\begin{cases}x=10\\y=5\end{cases}}\)
Vậy \(Min_C=-19\Leftrightarrow\hept{\begin{cases}x=10\\y=5\end{cases}}\)
\(D=x^2-2xy+2y^2-2x-10y+20\)
\(D=\left(x-y\right)^2-2\left(x-y\right)+1+\left(y^2-12y+36\right)-17\)
\(D=\left(x-y-1\right)^2+\left(y-6\right)^2-17\ge-17\left(\forall x,y\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x-y-1\right)^2=0\\\left(y-6\right)^2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=y+1\\y=6\end{cases}}\Rightarrow\hept{\begin{cases}x=7\\y=6\end{cases}}\)
Vậy \(Min_D=-17\Leftrightarrow\hept{\begin{cases}x=7\\y=6\end{cases}}\)
Ta có:
A=-2x^2-10y^2+4xy +4x+4y+2013
=-(2x^2+10^2-4xy-4x-4y-2013)
=-[(2x^2+2y^2-4xy)-(4x-4y)+2-2015+8y^2-8y]
=-[2(x-y)^2-4(x-y)+2+(8y^2-8y+2)-2017]
=-[2(x-y-1)^2+8(y-1/4)^2]+2017
vì 2(x-y-1)^2\(\ge\)0với mọi x,y
8(y-1/4)^2\(\ge\)0với mọi y
=>-[2(x-y-1)^2+8(y-1/4)^2]\(\le\)0với mọi x,y
=>A=-[2(x-y-1)^2+8(y-1/4)^2]+2017\(\le\)2017với mọi x,y
dấu "=" xảy ra khi\(\Leftrightarrow\left\{{}\begin{matrix}y-\dfrac{1}{4}=0\\x-y-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{1}{4}\\x-\dfrac{5}{4}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{1}{4}\\x=\dfrac{5}{4}\end{matrix}\right.\)
Vậy GTLN của A là 2017 khi y=1/4;x=5/4
Sử dụng các hằng đẳng thức: (a-b-c)2=a^2+b^2+c^2-2ab-2ac+2bc
A= -2(x2+y2-2xy-2x+2y+1)-8y2+8y+2+2013=-2(x-y-1)2-8(y2-2.y.1/2+1/4)+2+2+2013=-(x-y-1)2-(y-1/2)2+2017\(\le2017\)
'=' xảy ra khi và chỉ khi \(\hept{\begin{cases}x-y-1=0\\y-\frac{1}{2}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{3}{2}\\y=\frac{1}{2}\end{cases}}}\)
Vậy gtln của A=2017 khi x=3/2 và y=1/2