K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2023

Có: \(\left|2022-2x+y\right|\ge0\forall x,y\)

       \(\left(x-y-2021\right)^2\ge0\forall x,y\)

\(\Rightarrow\left|2022-2x+y\right|+\left(x-y-2021\right)^2\ge0\forall x,y\)

Mặt khác: \(\left|2022-2x+y\right|+\left(x-y-2021\right)^2=0\)

nên \(\left\{{}\begin{matrix}2022-2x+y=0\\x-y-2021=0\end{matrix}\right.\)           \(\Rightarrow\left\{{}\begin{matrix}-2x+y=-2022\\x-y=2021\end{matrix}\right.\)

\(\Rightarrow-2x+y+x-y=-2022+2021\)

\(\Rightarrow-x=-1\Leftrightarrow x=1\)

Khi đó: \(1-y=2021\) \(\Leftrightarrow y=-2020\)

\(\Rightarrow x+y=1-2020=-2019\)

|2022-2x+y|+(x-y-2021)^2=0

=>2022-2x+y=0 và x-y-2021=0

=>x-y=2021 và 2x-y=2022

=>x=1 và y=-2020

12 tháng 3 2017

Sử dụng Bdt thức   \(ab\le\left(\frac{a+b}{2}\right)^2\)  với  \(a,b>0\).

Tự chứng minh

\(------------------\)

Áp dụng bđt trên, ta có:

\(A=x^2y=\frac{1}{2}.2x.xy\le\frac{1}{2}\left(\frac{2x+xy}{2}\right)^2=\frac{1}{8}\left(2x+xy\right)^2=\frac{1}{8}.4^2=2\)

Dấu  \("="\)  xảy ra khi và chỉ khi  \(\hept{\begin{cases}2x=xy\\2x+xy=4\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}}\)  

Kết luận: .....

29 tháng 12 2016

Mình mới học lớp 6

Nên không biết nha

Chúc các bạn học giỏi

29 tháng 12 2016

Mình cũng học lớp 6 nè

2 tháng 2 2018

hệ pt <=> 2x-4y = 6m+2

                2x+y = m+2

<=> 2x-4y-2x-y = 6m+2-m-2

       2x+y = m+2

<=> -5y=5m

        2x+y = m+2

<=> x=m+1 và y=-m

Khi đó : x^2-y^2 = (m+1)^2-(-m)^2 = m^2+2m+1-m^2 = 2m+1

Hình như đề sai hoặc thiếu rùi bạn ơi !

Tk mk nha

30 tháng 9 2016

Áp dụng bđt \(\left(a+b\right)^2\ge4ab\) , ta có : 

\(16=\left(2x+xy\right)^2\ge4.2x.xy\Leftrightarrow8x^2y\le16\Leftrightarrow x^2y\le2\)

A đạt giá trị lớn nhất bằng 2 khi x = 1, y = 2

DD
24 tháng 10 2021

\(P=\frac{xy+x+y+2}{x+y+2}=\frac{xy}{x+y+2}+1\)

Đặt \(Q=\frac{x+y+2}{xy}=\frac{1}{x}+\frac{1}{y}+\frac{2}{xy}\)

Ta có: \(4=x^2+y^2\ge2xy\Leftrightarrow xy\le2\)

\(\left(x+y\right)^2\le2\left(x^2+y^2\right)=8\Rightarrow x+y\le2\sqrt{2}\)

\(Q=\frac{1}{x}+\frac{1}{y}+\frac{2}{xy}\ge\frac{4}{x+y}+\frac{2}{xy}\ge\frac{4}{2\sqrt{2}}+\frac{2}{2}=1+\sqrt{2}\)

Suy ra \(P\le\frac{1}{1+\sqrt{2}}+1=\frac{\sqrt{2}-1}{\left(1+\sqrt{2}\right)\left(\sqrt{2}-1\right)}+1=\sqrt{2}\).

Dấu \(=\)khi \(x=y=\sqrt{2}\).

24 tháng 10 2021

TL:

P=xy+x+y+2x+y+2 =xyx+y+2 +1

Đặt Q=x+y+2xy =1x +1y +2xy 

Ta có: 4=x2+y2≥2xy⇔xy≤2

(x+y)2≤2(x2+y2)=8⇒x+y≤2√2

Q=1x +1y +2xy ≥4x+y +2xy ≥42√2 +22 =1+√2

Suy ra P≤11+√2 +1=√2−1(1+√2)(√2−1) +1=√2.

Dấu  = khi x=y=√2.

^HT^