Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\sqrt{x^2+y^2+4x-2y+5}+\sqrt{x^2+y^2-8x-14y+65}=6\sqrt{2}\)
\(\Leftrightarrow\sqrt{\left(x+2\right)^2+\left(y-1\right)^2}+\sqrt{\left(4-x\right)^2+\left(7-y\right)^2}=6\sqrt{2}\left(^∗\right)\)
Xét hai vectơ \(\overrightarrow{u}=\left(x+2;y-1\right)\)và \(\overrightarrow{v}=\left(4-x;7-y\right)\)
Ta có: \(\overrightarrow{u}+\overrightarrow{v}=\left(6;6\right)\Rightarrow\left|\overrightarrow{u}+\overrightarrow{v}\right|=\sqrt{6^2+6^2}=6\sqrt{2}\)
Do vậy \(\left(^∗\right)\)trở thành\(\overrightarrow{u}+\overrightarrow{v}=\left|\overrightarrow{u}+\overrightarrow{v}\right|\)
Điều này xảy ra khi và chỉ khi \(\overrightarrow{u}\)và \(\overrightarrow{v}\)cùng hướng
\(\Leftrightarrow\hept{\begin{cases}\left(x+2\right)\left(7-y\right)=\left(y-1\right)\left(4-x\right)\\\left(x+2\right)\left(4-x\right)\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=x+3\\-2\le x\le4\end{cases}}\)
Khi y = x + 3 thì \(x^2+y^2-2x+2y+2=2x^2+6x+17\)
Xét hàm số \(f\left(x\right)=2x^2+6x+17\)trên đoạn \(\left[-2;4\right]\)
Ta có: \(-\frac{6}{2.2}=\frac{-3}{2}\in\left[-2;4\right]\)và \(f\left(-2\right)=13;f\left(-\frac{3}{2}\right)=\frac{25}{2};f\left(4\right)=73\)
Suy ra \(|^{min}_{\left[-2;4\right]}f\left(x\right)=\frac{25}{2}\);\(|^{max}_{\left[-2;4\right]}f\left(x\right)=73\)
Do đó \(m=\frac{25}{2};M=73\)và \(n+M=\frac{171}{2}\)
Vậy \(n+M=\frac{171}{2}\)
a.
Phương trình hoành độ giao điểm:
\(x^2+6x+3=-2mx-m^2\Leftrightarrow x^2+2\left(m+3\right)x+m^2+3=0\)
\(\Delta'=\left(m+3\right)^2-\left(m^2+3\right)=6\left(m+1\right)>0\Rightarrow m>-1\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_A+x_B=-2\left(m+3\right)\\x_Ax_B=m^2+3\end{matrix}\right.\)
\(P=10\left(m+3\right)-2\left(m^2+3\right)=-2m^2+10m+24\)
\(P=-2\left(m-\dfrac{5}{2}\right)^2+\dfrac{73}{2}\le\dfrac{73}{2}\)
\(P_{max}=\dfrac{73}{2}\) khi \(m=\dfrac{5}{2}\)
b.
Pt hoành độ giao điểm:
\(x^2-2x-2=x+m\Leftrightarrow x^2-3x-m-2=0\)
\(\Delta=9+4\left(m+2\right)>0\Rightarrow m>-\dfrac{17}{4}\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_A+x_B=3\\x_Ax_B=-m-2\end{matrix}\right.\)
Đồng thời \(y_A=x_A+m\) ; \(y_B=x_B+m\)
\(P=OA^2+OB^2=x_A^2+y_A^2+x_B^2+y_B^2\)
\(=x_A^2+x_B^2+\left(x_A+m\right)^2+\left(x_B+m\right)^2\)
\(=2\left(x_A^2+x_B^2\right)+2m\left(x_A+x_B\right)+2m^2\)
\(=2\left(x_A+x_B\right)^2-4x_Ax_B+2m\left(x_A+x_B\right)+2m^2\)
\(=18-4\left(-m-2\right)+6m+2m^2\)
\(=2m^2+10m+26=2\left(m+\dfrac{5}{2}\right)^2+\dfrac{27}{2}\ge\dfrac{27}{2}\)
Dấu "=" xảy ra khi \(m=-\dfrac{5}{2}\)
Bạn tham khảo nhé!
Câu hỏi của Lê VĂn Chượng - Toán lớp 10 - Học toán với OnlineMath
+ Biểu diễn miền nghiệm của BPT \(x - y \le 6\)
Bước 1: Vẽ đường thẳng \(d:x - y = 6\) trên mặt phẳng tọa độ Õy
Bước 2: Lấy O(0;0) không thuộc d, ta có: \(0 - 0 = 0 \le 6\) => điểm O(0;0) thuộc miền nghiệm
=> Miền nghiệm của BPT \(x - y \le 6\) là nửa mp bờ d, chứa gốc tọa độ.
+ Tương tự, ta có miền nghiệm của BPT \(2x - y \le 2\) là nửa mp bờ \(d':2x - y = 0\), chứa gốc tọa độ.
+ Miền nghiệm của BPT \(x \ge 0\) là nửa mp bên phải Oy (tính cả trục Oy)
+ Miền nghiệm của BPT \(y \ge 0\) là nửa mp phía trên Ox (tính cả trục Ox)
Biểu diễn trên cùng một mặt phẳng tọa độ và gạch bỏ các miền không là nghiệm của từng BPT, ta được:
Miền nghiệm của hệ bất phương trình đã cho là miền tứ giác OABC (miền không bị gạch) với \(A(0;6),B(\frac{8}{3};\frac{{10}}{3}),C(1;0)\)
b)
Thay tọa độ các điểm \(O(0;0),A(0;6),B(\frac{8}{3};\frac{{10}}{3}),C(1;0)\) và biểu thức \(F(x;y) = 2x + 3y\) ta được:
\(\begin{array}{l}F(0;0) = 2.0 + 3.0 = 0\\F(0;6) = 2.0 + 3.6 = 18\\F(\frac{8}{3};\frac{{10}}{3}) = 2.\frac{8}{3} + 3.\frac{{10}}{3} = \frac{{46}}{3}\\F(1;0) = 2.1 + 3.0 = 2\end{array}\)
\( \Rightarrow \min F = 0\), \(\max F = 18\)
Vậy trên miền D, giá trị nhỏ nhất của F bằng 0, giá trị lớn nhất của F bằng \(18\).
A = -x2 - 2xy - y2 - 2y2 + 10x + 10y + 4y - 25 + 7
= (-x2 - 2xy - y2 + 10x + 10y - 25) - 2y2 + 4y + 7
= -(x2 + 2xy + y2 - 10x - 10y + 25) - (2y2 - 4y - 7)
= -[(x+y)2 - 10(x+y) + 25] - (2y2 - 4y + 2 - 9)
= -(x + y - 5)2 - 2(y2 - 2y + 1) + 9
= -(x + y - 5)2 - 2(y - 1)2 + 9 ≤ 9
Dấu ''='' xảy ra <=> x + y - 5 = 0 và y -1 =0
<=> x + y = 5 và y = 1
<=> x = 4 và y = 1
Vậy max A = 9 <=> x = 4 và y = 1 .
- Mình chúc bạn học tốt nhé !