\(x^2+\left(2m-1\right)x+m=0\) có hai nghiệm phân...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(\Delta=4m^2-8m+1\)

Để phương trình có 2 nghiệm phân biệt \(\Leftrightarrow\Delta>0\) \(\Leftrightarrow\left[{}\begin{matrix}x< \dfrac{2-\sqrt{3}}{2}\\x>\dfrac{2+\sqrt{3}}{2}\end{matrix}\right.\)

Theo Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=1-2m\left(1\right)\\x_1x_2=m\left(2\right)\end{matrix}\right.\)

Ta lập được HPT \(\left\{{}\begin{matrix}x_1+x_2=1-2m\\2x_1=x_2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x_1=1-2m\\x_2=2x_1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{1-2m}{3}\\x_2=\dfrac{2-4m}{3}\end{matrix}\right.\)

Kết hợp với (2), ta được:

\(\dfrac{8m^2-12m+2}{9}=m\) \(\Leftrightarrow...\) 

 

 

 

 

NV
5 tháng 11 2019

\(m\ne-4\)

\(\Delta=\left(2m+7\right)^2-4\left(m+4\right)\left(m+1\right)=8m+33\ge0\Rightarrow m\ge\frac{33}{8}\)

Theo định lý Viet: \(\left\{{}\begin{matrix}x_1+x_2=\frac{-2m-7}{m+4}\\x_1x_2=\frac{m+1}{m+4}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}3x_1+x_2=1\\x_1+x_2=\frac{-2m-7}{m+4}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}3x_1+x_2=1\\2x_1=1+\frac{2m+7}{m+4}=\frac{3m+11}{m+4}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=\frac{3m+11}{2m+8}\\x_2=1-3x_1=\frac{-7m-24}{2m+8}\end{matrix}\right.\)

Thay vào ta được:

\(\left(\frac{3m+11}{2m+8}\right)\left(\frac{-7m-24}{2m+8}\right)=\frac{m+1}{m+4}\)

Bạn tự giải ra m

7 tháng 11 2019

tks nhé
p.s: cái đk đầu tiên phải là \(\ge-\frac{33}{8}\) chứ nhỉ hehe

21 tháng 11 2022

Câu 2:

\(\Delta=\left(-4\right)^2-4\left(m+1\right)=16-4m-4=-4m+12\)

Để phương trình có hai nghiệm thì -4m+12>=0

=>m<=3

Để pt có 2 nghiệm cùng dấu thì x1*x2>0

=>m+1>0

=>m>-1

26 tháng 7 2016

a) Ta có: \(\Delta\) = (-2m)2 - 4.1.(m-2) = 4m2 - 4m + 8 = (4m2 - 4m + 1) + 7 = (2m-1)2 + 7 \(\ge\) 7 > 0 x do đo (1) luôn có 2 nghiệm với mọi m.

15 tháng 11 2018

a/ Ta có : △' = (-2)2-(m+3)

=4-m-3 = 1-m

De ptr co 2 nghiem x1 va x2 thì △' ≥0

=>1-m≥0 =>m≤1

Theo Viei{ x1+x2=4 ; x1x2=m+3

Ta co: |x1-x2|=2 ⇔(x1-x2)2=4

⇔(x1+x2)2-4x1x2=4

⇔42-4(m+3)=4

⇔m=0 (TM)

b/ Ta co: △ = (m-1)2-4(m+6)

=m2-6m-23 De ptr co 2 nghiem x1 , x2 thi △≥ 0

=> m2-6m-23≥0 (*)

Theo viet { x1+x2=1-m ; x1x2=m+6

db <=> ( x1+x2)2-2x1x2=10

⇔ (1-m)2-2(m+6)=10

⇔ m2-4m -21 =0

⇔[m=7 ; m=-3

Thay vao (*) =>m=7 (loai) ; m=-3 (tm)

c/ Ta co :△' = (-m)2-(3m-2)

= m2-3m+2

De ptr co 2 nghiem x1 , x2 thi : △' ≥0

⇔m2-3m+2≥0 (*)

Theo viet { x1+x2=2m ; x1x2=3m-2

db <=> ( x1+x2)2-3x1x2=4

⇔ (2m)2-3(3m-2)=4

⇔ 4m2--9m+2 =0

⇔[m=2 ; m=\(\dfrac{1}{4}\)

Thay vao (*) =>m=2 (tm) ; m=\(\dfrac{1}{4}\) (tm)

d/ Ta co : △=(-3)2-4(m-2)

=17-4m

De ptr co 2 nghiem x1 , x2 thi : △ ≥0

⇔17-4m≥0

⇔m≤\(\dfrac{17}{4}\)

theo viet{ x1+x2=3 ; x1x2= m-2

⇔(x1+x2)3-3x1x2(x1+x2) =9

⇔33-3.3(m-2)=9

⇔m=4(tm)

NV
18 tháng 10 2020

Bạn tham khảo:

Câu hỏi của Lê Ngọc Cương - Toán lớp 9 | Học trực tuyến

NV
21 tháng 8 2020

Để pt có 2 nghiệm

\(\Leftrightarrow\left\{{}\begin{matrix}m-1\ne0\\\Delta'=\left(m+1\right)^2-m\left(m-1\right)\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\3m+1\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\m\ge-\frac{1}{3}\end{matrix}\right.\)

Khi đó theo định lý Viet: \(\left\{{}\begin{matrix}x_1+x_2=\frac{2\left(m+1\right)}{m-1}\\x_1x_2=\frac{m}{m-1}\end{matrix}\right.\)

\(\left|x_1-x_2\right|\ge2\Leftrightarrow\left(x_1-x_2\right)^2\ge4\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2\ge4\)

\(\Leftrightarrow4\left(\frac{m+1}{m-1}\right)^2-\frac{4m}{m-1}\ge4\)

\(\Leftrightarrow\left(1+\frac{2}{m-1}\right)^2-\left(1+\frac{1}{m-1}\right)-1\ge0\)

Đặt \(\frac{1}{m-1}=t\)

\(\Rightarrow\left(2t+1\right)^2-\left(t+1\right)-1\ge0\)

\(\Leftrightarrow4t^2+3t-1\ge0\Rightarrow\left[{}\begin{matrix}t\ge\frac{1}{4}\\t\le-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\frac{1}{m-1}\ge\frac{1}{4}\\\frac{1}{m-1}\le-1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\frac{5-m}{m-1}\ge0\\\frac{m}{m-1}\le0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}1< m\le5\\0\le m< 1\end{matrix}\right.\)

\(\Rightarrow m_{max}=5\)

5 tháng 12 2019

Cho phương trình (m−1)x2 + 3x − 1=0

a , Tìm m để phương trình có hai nghiệm dương phân biệt

Để pt có 2 nghiệm dương phân biệt thì

✱△ > 0

△ = 32 - 4.(-1).(m-1) = 4m + 5 > 0 ⇔ m > \(\frac{-5}{4}\)

✱ S > 0

\(\frac{-3}{m-1}\) > 0 ⇔ m -1 < 0 ⇔ m < 1

✱ P > 0

\(\frac{-1}{m-1}\) > 0 ⇔ m - 1 < 0 ⇔ m < 1

Vậy m ∈ (\(\frac{-5}{4}\); 1) thì phương trình có 2 nghiệm dương phân biệt.

14 tháng 9 2020

\(\Delta=\left(-m\right)^2-4\left(m-1\right).1=\left(m-2\right)^2\)

\(\Rightarrow\)Pt có hai nghiệm phân biệt \(\forall m\ne2\)

\(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=m-1\end{cases}}\),\(\Rightarrow x_1^2+x_2^2=\left(m-1\right)^2+1\) thay vào B:

\(B=\frac{2\left(m-1\right)+3}{\left(m-1\right)^2+1+2\left[\left(m-1\right)+1\right]}\)

\(B=\frac{2m+1}{m^2+2}\)

Mình chỉ biết làm đến đấy thôi, xl bạn T_T.
 

15 tháng 9 2020

Giờ mình ra GTNN rồi

\(B=\frac{2m+1}{m^2+2}\)

\(B=\frac{\frac{1}{2}\left(m^2+4m+4\right)-\frac{1}{2}\left(m^2+2\right)}{m^2+2}=\frac{\left(m+2\right)^2}{2\left(m^2+2\right)}-\frac{1}{2}\ge\frac{-1}{2}\)

\(\Rightarrow B_{min}=\frac{-1}{2}\)tại \(m=-2\)