Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TA CÓ : \(\frac{a\left(3x-1\right)}{5}-\frac{6x-17}{4}+\frac{3x+2}{10}=0\)
\(\Leftrightarrow\frac{4a\left(3x-1\right)}{20}-\frac{30x-85}{20}+\frac{6x+4}{20}=0\)
\(\Leftrightarrow\frac{12ax-4a-30x+85+6x+4}{20}=0\)
\(\Leftrightarrow12ax-4a-24x+89=0\)
\(\Leftrightarrow12x\left(a-2\right)+89-4a=0\)
\(\Leftrightarrow x=\frac{4a-89}{12\left(a-2\right)}\)
\(\Rightarrow\)ĐỂ PT VÔ NGHIỆM KHI VÀ CHỈ KHI \(a-2=0\Leftrightarrow a=2\)
vậy
\(\Leftrightarrow4a\left(3x-1\right)-5\left(6x-17\right)+6x+4=0\)
\(\Leftrightarrow4a\left(3x-1\right)-30x+85+6x+4=0\)
\(\Leftrightarrow12ax-4a-24x+89=0\)
\(\Leftrightarrow x\left(12a-24\right)=4a-89\)
Để phương trình vô nghiệm thì 12a-24=0
hay a=2
a)\(ĐKXĐ:x\ne m;x\ne2\)
\(\frac{x+1}{m-x}=\frac{x+4}{x-2}\)
\(\Leftrightarrow\left(m-x\right)\left(x+4\right)=\left(x+1\right)\left(x-2\right)\)
\(\Leftrightarrow-x^2+\left(m-4\right)x+4m=x^2-x-2\)
\(\Leftrightarrow-2x^2+\left(m-3\right)x+\left(4m+2\right)=0\)
Để phương trình vô nghiệm thì \(\Delta< 0\)
hay \(\left(m-3\right)^2-4.\left(-2\right).\left(4m+2\right)< 0\)
\(\Leftrightarrow m^2-6m+9+32m+16< 0\)
\(\Leftrightarrow m^2+26m+25< 0\)
\(\Leftrightarrow m^2+26m+169-144< 0\)
\(\Leftrightarrow\left(m+13\right)^2< 144\)
\(\Leftrightarrow\orbr{\begin{cases}m+13< 12\\m+13>-12\end{cases}}\Leftrightarrow\orbr{\begin{cases}m< -1\\m>-25\end{cases}}\)
b) \(ĐKXĐ:x\ne m;x\ne1\)
\(1+\frac{2x+1}{m-x}=\frac{3x-5}{x-1}\)
\(\Leftrightarrow\frac{x+1+m}{m-x}=\frac{3x-5}{x-1}\)
\(\Leftrightarrow\left(x+1+m\right)\left(x-1\right)=\left(3x-5\right)\left(m-x\right)\)
\(\Leftrightarrow x^2+mx-m-1=3xm-5m-3x^2+5x\)
\(\Leftrightarrow4x^2-\left(2m+5\right)x+\left(4m-1\right)=0\)
Để phương trình vô nghiệm thì \(\Delta< 0\)
\(\Rightarrow\left(2m+5\right)^2-4.4.\left(4m-1\right)=4m^2-44m+41< 0\)
\(\Rightarrow4m^2-44m+121-80< 0\)
\(\Rightarrow\left(2m-11\right)^2< 80\)
\(\Rightarrow\orbr{\begin{cases}2m-11< \sqrt{80}\\2m-11>-\sqrt{80}\end{cases}}\)
Vậy \(\orbr{\begin{cases}m< \frac{\sqrt{80}+11}{2}\\m>-\frac{\sqrt{80}+11}{2}\end{cases}}\)
1) \(x^4-6x^3-x^2+54x-72=0\)
\(\Leftrightarrow x^3\left(x-2\right)-4x^2\left(x-2\right)-9x\left(x-2\right)+36\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-4x^2-9x+36\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x-4\right)-9\left(x-4\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x^2-9\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x-3\right)\left(x+3\right)=0\)
Tự làm nốt...
2) \(x^4-5x^2+4=0\)
\(\Leftrightarrow x^2\left(x^2-1\right)-4\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)
Tự làm nốt...
\(x^4-2x^3-6x^2+8x+8=0\)
\(\Leftrightarrow x^3\left(x-2\right)-6x\left(x-2\right)-4\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-6x-4\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x+2\right)-2x\left(x+2\right)-2\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x^2-2x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left[\left(x-1\right)^2-\left(\sqrt{3}\right)^2\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-1-\sqrt{3}\right)\left(x-1+\sqrt{3}\right)=0\)
...
\(2x^4-13x^3+20x^2-3x-2=0\)
\(\Leftrightarrow2x^3\left(x-2\right)-9x^2\left(x-2\right)+2x\left(x-2\right)+\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x^3-9x^2+2x+1\right)=0\)
Bí