K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2019

Ta có: \(|x|\ge0;\forall x\)

\(\Rightarrow|x|+2018\ge0+2018;\forall x\)

\(\Rightarrow\frac{|x|+2018}{2013}\ge\frac{2018}{2013};\forall x\)

\(\Rightarrow\frac{|x|+2018}{-2013}\le\frac{-2018}{2013};\forall x\)

Hay \(B\le\frac{-2018}{2013};\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=0\)

Vậy \(MAX\)\(B=\frac{-2018}{2013}\Leftrightarrow x=0\)

3 tháng 7 2019

Tôi nghĩ đề bài là tìm GTNN hoặc GTLN nếu có chứ có giá trị truyệt đối x thế kia sao tính đc

Ta có : \(|x|\ge0;\forall x\)

\(\Rightarrow|x|+2019\ge0+2019;\forall x\)

\(\Rightarrow\frac{2012}{|x|+2019}\le\frac{2012}{2019};\forall x\)

Hay \(A\le\frac{2012}{2019};\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=0\)

Vậy \(Max\)\(A=\frac{2012}{2019}\Leftrightarrow x=0\)

6 tháng 3 2020

\(A=\frac{\left|x-2017\right|+2018}{\left|x-2017\right|+2019}\)

\(A=\frac{\left|x-2017\right|+2019-1}{\left|x-2017\right|+2019}\)

\(A=1-\frac{1}{\left|x-2017\right|+2019}\)

A nhỏ nhất khi \(1-\frac{1}{\left|x-2017\right|+2019}\)nhỏ nhất

khi \(\frac{1}{\left|x-2017\right|+2019}\)lớn nhất

khi \(\left|x-2017\right|+2019\)nhỏ nhất

mà |x - 2017| \(\ge0\)

=> |x - 2017| + 2019 \(\ge2019\)

Vậy A nhỏ nhất khi A = 2019 khi x - 2017 = 0 => x = 2017

6 tháng 3 2020

\(A=\frac{\backslash x-2017\backslash+2018}{\backslash x-2017\backslash+2019}\) 

\(A=\frac{2018}{2019}\)

24 tháng 1 2017

Đặt bẫy hả

31 tháng 3 2017

2.

a/\(A=5-I2x-1I\)

Ta thấy: \(I2x-1I\ge0,\forall x\)

nên\(5-I2x-1I\le5\)

\(A=5\)

\(\Leftrightarrow5-I2x-1I=5\)

\(\Leftrightarrow I2x-1I=0\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)

b/\(B=\frac{1}{Ix-2I+3}\)

Ta thấy : \(Ix-2I\ge0,\forall x\)

nên \(Ix-2I+3\ge3,\forall x\)

\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)

\(B=\frac{1}{3}\)

\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)

\(\Leftrightarrow Ix-2I+3=3\)

\(\Leftrightarrow Ix-2I=0\)

\(\Leftrightarrow x=2\)

Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)