K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2016

Ta có: \(2a+3b=2,211\)

Suy ra: \(10a+15b=11,055\left(1\right)\)

Ta lại có: \(5a-7b=1,946\)

Suy ra: \(10a-14b=3,892\left(2\right)\)

Lấy (1) trừ (2) theo từng vế ta được: \(29b=7,163\)

Suy ra: \(b=0,247\)

Suy ra: \(a=0,735\)
10 tháng 11 2016

Mik nhầm là không dùng máy tính.

Đây là hệ phương trình, bạn có thể bấm máy tính như sau: (với máy \(fx-570ES\))
đầu tiên ta ấn \(MODE\), tiếp bấm \(5\left(EQN\right)\), chọn \(1\), tiếp tục bấm 2 rồi ấn =, tiếp bấm tương tự các số theo thứ tự như trên. nhớ mỗi lần bấn số thì ấn =, cuối cùng ra kết quả của x và y tương ứng a và b.

6 tháng 2 2017

1) Nhìn cái pt hết ham, nhưng bấm nghiệm đẹp v~`~

\(\left(\sqrt{2}+2\right)\left(x\sqrt{2}-1\right)=2x\sqrt{2}-\sqrt{2}\)

\(\Leftrightarrow\left(\sqrt{2}+2\right)\left(x\sqrt{2}-1\right)-2x\sqrt{2}+\sqrt{2}=0\)

\(\Leftrightarrow2x-\sqrt{2}+2x\sqrt{2}-2-2x\sqrt{2}+\sqrt{2}=0\)

\(\Leftrightarrow2x-2=0\Leftrightarrow2x=2\Rightarrow x=1\)

6 tháng 2 2017

Mấy bài kia sao cái phương trình dài thê,s giải sao nổi

1 tháng 6 2017

Bổ xung đề a,b,c dương 

1/ Chứng minh a < 1 

Ta có: \(\left(a-1\right)\left(b-1\right)+\left(b-1\right)\left(c-1\right)+\left(c-1\right)\left(a-1\right)\)

\(=ab+bc+ca-2\left(a+b+c\right)+3=9-2.6+3=0\)

Nếu \(1\le a< b< c\) thì \(\left(a-1\right)\left(b-1\right)+\left(b-1\right)\left(c-1\right)+\left(c-1\right)\left(a-1\right)>0\)(mâu thuẫn)

\(\Rightarrow a< 1\)

Chứng minh b > 1 

Giả sử \(a< b\le1\Rightarrow ab< 1\)

Ta có: \(9=ab+c\left(a+b\right)< 1+c\left(a+b\right)\)

\(\Rightarrow c\left(a+b\right)>8\)

Ta có: \(\frac{c}{2}+\left(a+b\right)\ge2\sqrt{\frac{c}{2}.\left(a+b\right)}>2\sqrt{\frac{8}{2}}=4\)

Ta có: \(\hept{\begin{cases}a+b+c=6\\a+b+\frac{c}{2}>4\end{cases}}\)

\(\Rightarrow6-c+\frac{c}{2}>4\)

\(\Rightarrow c< 4\)

\(\Rightarrow a+b>2\)(trái giải thuyết)

\(\Rightarrow b>1\)

Tương tự làm phần còn lại nhé.

1 tháng 6 2017

tui thấy cách cho THCS r` cho a,b,c la so thuc thoa man : a<b<c ; a+b+c=6 ; ab+bc+ac=9 . chung minh rang : 0<a<1<b<3<c<4? | Yahoo Hỏi & Đáp

15 tháng 9 2018

     \(10a^2-b^2+ab=0\)

\(\Rightarrow10a^2+6ab-5ab-3b^2=0\)

\(\Rightarrow2a\left(5a+3b\right)-b\left(5a+3b\right)=0\)

\(\Rightarrow\left(5a+3b\right)\left(2a-b\right)=0\)

Mà \(b>a>0\Rightarrow5a+3b>0\)

Do đó: \(2a-b=0\Rightarrow2a=b\)

Ta có: \(B=\frac{2a-b}{3a-b}+\frac{5b-a}{3a+b}\)

             \(=0+\frac{10a-a}{3a+2a}\) (vì b = 2a)

              \(=0+\frac{9}{5}=\frac{9}{5}\)

Vậy \(A=\frac{9}{5}\)

Chúc bạn học tốt.

         

28 tháng 9 2019

\(A=a^3+b^3+3ab\)

\(=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab\)

\(=a^2-ab+b^2+3ab\)

\(=a^2+2ab+b^2\)

\(=\left(a+b\right)^2=1^2=1\)

\(B=4\left(a^3+b^3\right)-6\left(a^2+b^2\right)\)

\(=4\left(a+b\right)\left(a^2-ab+b^2\right)-6a^2-6b^2\)

\(=4\left(a^2-ab+b^2\right)-6a^2-6b^2\)

\(=4a^2-4ab+4b^2-6a^2-6b^2\)

\(=-2a^2-4ab-2b^2\)

\(=-2\left(a^2+2ab+b^2\right)\)

\(=-2\left(a+b\right)^2=-2.1^2=-2\)