K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2016

\(D=x^2+2xy+y^2+x^2-2x+2y+2\)

   \(=\left(x+y\right)^2+x^2-2x+2y+2\)

Đến đây thì dễ rồi nhá !!!!

30 tháng 6 2016

vậy thử làm hết đi

30 tháng 6 2016

C = 2x2 + 2xy  + y2 - 2x -2y +2 

= x2 + 2x(y - 1) + (y - 1)2 + x2 + 1 

= (x + y - 1)2 + x2 + 1

Tới đây tự làm

hoc tot de lam lien doi nho chua.

7 tháng 4 2018

\(A=2x^2+y^2-2xy-2x+3\)

\(A=\left(x^2-2xy+y^2\right)+\left(x^2-2x+1\right)+2\)

\(A=\left(x-y\right)^2+\left(x-1\right)^2+2\)

Mà \(\left(x-y\right)^2\ge0\forall x;y\)

       \(\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow A\ge2\)

Dấu "=" xảy ra khi :

\(\hept{\begin{cases}x-y=0\\x-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=1\\x=1\end{cases}}\)

Vậy Min A = 2 khi x=y=1

30 tháng 6 2016

thiếu bn ơi

1 tháng 7 2016

bạn ghi sai đề rồi phải là - 2y mới làm dc nha

\(B=x^2+2x\left(y-1\right)+\left(y-1\right)^2+x^2+1\)

\(B=\left(x+y-1\right)^2+x^2+1\ge1\)

Min của B = 1 khi x+y -1=0,x^2=0

       => x+y= 1 , x=0 

   => x=0,y=1 

Ung hộ mình nha

a,   B=x2+4xy+y2+x2-8x+16+2012

       B=(x+y) 2+(x-4)2+2012

 Vậy B >=2012 ( Dấu "=" xảy ra khi x=4,y=-4)

b làm tương tự 

c,  9x2+6x+1+y2-4y+4+x2-4xz+4z2=0

     (3x+1)2+(y-4)2+(x-2z)2=0

    Vậy 3x+1=0 => x = -1/3

           y-4=0 => y=4

             x-2z=0  thế x=-1/3 ta được.      -1/3-2z=0 => z = -1/6

Bạn nhớ ghi lại đề minh không ghi đề 

           

a) \(B=2x^2+y^2+2xy-8x+2028\)

\(=\left(x^2+2xy+y^2\right)+\left(x^2-8x+4^2\right)+2012=\left(x+y\right)^2+\left(x-4\right)^2+2012\ge2012\)

\(MinB=2012\Leftrightarrow\hept{\begin{cases}x=4\\y=-4\end{cases}}\)

b)\(C=x^2+5y^2+4xy+2x+2y-7\)

\(=\left(x^2+4xy+4y^2\right)+\left(2x+4y\right)+1+\left(y^2-2y+1\right)-9\)

\(=\left(\left(x+2y\right)^2+2\left(x+2y\right)+1\right)+\left(y-1\right)^2-9=\left(x+2y+1\right)^2+\left(y-1\right)^2-9\ge9\)

\(MinC=-9\Leftrightarrow\hept{\begin{cases}x+2y+1=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)

c)\(10x^2+y^2+4z^2+6x-4y-4xz+5=0\)

\(\Leftrightarrow\left(9x^2+6x+1\right)+\left(y^2-4y+4\right)+\left(x^2-4xz+4z^2\right)=0\)

\(\Leftrightarrow\left(3x+1\right)^2+\left(y-2\right)^2+\left(x-2z\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}3x+1=0\\y-2=0\\x-2z=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{1}{3}\\y=2\\z=-\frac{1}{6}\end{cases}}\)

31 tháng 8 2018

\(4x^2+y^2-2xy-2x+2y=\left(x^2+y^2+1-2xy-2x+2y\right)+3x^2.\)

\(=\left(x-y-1\right)^2+3x^2\ge0\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x-y-1\right)^2=0\\3x^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=-1\end{cases}}\)

2 tháng 3 2020

\(D=2x^2+2xy+y^2-2x+2y+2\)

\(=\left(x^2+2xy+y^2\right)+2\left(x+y\right)+1+x^2-4x+1\)

\(=\left(x+y\right)^2+2\left(x+y\right)+1+\left(x^2-4x+4\right)-3\)

\(=\left(x+y+1\right)^2+\left(x-2\right)^2-3\)

Ta thấy : \(\left(x+y+1\right)^2+\left(x-2\right)^2\ge0\forall x,y\)

\(\Rightarrow\left(x+y+1\right)^2+\left(x-2\right)^2-3\ge-3\forall x,y\)

hay : \(D\ge-3\forall x,y\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x+y+1\right)^2=0\\\left(x-2\right)^2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=1\\x=2\end{cases}}\)

Vậy : min \(D=-3\) tại \(x=1,y=2\)

2 tháng 3 2020

Đạt sai ở chỗ dấu bằng xảy ra nhé em!

\(\hept{\begin{cases}\left(x+y+1\right)^2=0\\\left(x-2\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-3\\x=2\end{cases}}\)