K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2017

a/ la 4

b/ la 100

1 tháng 1 2017

cho rõ lời giải hộ tớ được không và cho cả giá trị x,y nữa

25 tháng 4 2020

A = ( x - 2 )2 + 2019 

    ( x-  2 )2 \(\ge0\forall x\)

=> ( x - 2)2 + 2019 \(\ge2019\)

=> A \(\ge2019\)

Dấu " = " xảy ra <=> ( x - 2)2 =0

                                    <=> x = 2 

b) Bạn xem lại đề nha !Nếu đề không sai thì nhắn lại với mình 

c) C = -( 3 -x)100 - 3. ( y + 2 )200 + 2020 

( 3-x )100 \(\ge0\forall x\)

=> - ( 3-x)100 \(\le0\forall x\)

Tương tự : - 3.( y+2)100 \(\le0\forall y\)

=> C \(\le2020\)

Dấu " = " xảy ra <=> \(\hept{\begin{cases}\left(3-x\right)^{100}=0\\\left(y+2\right)^{100}=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=3\\y=-2\end{cases}}\)

25 tháng 4 2020

@Shadow@ Đề câu b) đúng rồi đó

\(B=\left(x-3\right)^2+\left(y-2\right)^2-2018\)

ta có: \(\hept{\begin{cases}\left(x-3\right)^2\ge0\forall x\inℤ\\\left(y-2\right)^2\ge0\forall y\inℤ\end{cases}}\)

=> \(\left(x-3\right)^2+\left(y-2\right)^2-2018\le2018\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x-3\right)^2=0\\\left(y-2\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-3=0\\y-2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\y=2\end{cases}}}\)

Bài 1:

a) \(\left(x-3\right)^2+\left(y-1\right)^2+5\)

Ta có: \(\left(x-3\right)^2\ge0\forall x\)

\(\left(y-1\right)^2\ge0\forall y\)

Do đó: \(\left(x-3\right)^2+\left(y-1\right)^2\ge0\forall x,y\)

\(\Rightarrow\left(x-3\right)^2+\left(y-1\right)^2+5\ge5\forall x,y\)

Dấu '=' xảy ra khi

\(\left\{{}\begin{matrix}\left(x-3\right)^2=0\\\left(y-1\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)

Vậy: Giá trị nhỏ nhất của biểu thức \(\left(x-3\right)^2+\left(y-1\right)^2+5\)là 5 khi x=3 và y=1

b) \(\left|x-3\right|+x^2+y^2+1\)

Ta có: \(\left|x-3\right|\ge0\forall x\)

\(x^2\ge0\forall x\)

\(y^2\ge0\forall y\)

Do đó: \(\left|x-3\right|+x^2+y^2\ge0\forall x,y\)

\(\Rightarrow\left|x-3\right|+x^2+y^2+1\ge1\forall x,y\)

Dấu '=' xảy ra khi

\(\left\{{}\begin{matrix}\left|x-3\right|=0\\x^2=0\\y^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\x=0\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\x=0\\y=0\end{matrix}\right.\)

Vậy: Giá trị nhỏ nhất của biểu thức \(\left|x-3\right|+x^2+y^2+1\) là 1 khi x=3; x=0 và y=0

c) \(\left|x-100\right|+\left(x-y\right)^2+100\)

Ta có: \(\left|x-100\right|\ge0\forall x\)

\(\left(x-y\right)^2\ge0\forall x,y\)

Do đó: \(\left|x-100\right|+\left(x-y\right)^2\ge0\forall x,y\)

\(\Rightarrow\left|x-100\right|+\left(x-y\right)^2+100\ge100\forall x,y\)

Dấu '=' xảy ra khi

\(\left\{{}\begin{matrix}\left|x-100\right|=0\\\left(x-y\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-100=0\\x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=100\\100-y=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=100\\y=100\end{matrix}\right.\)

Vậy: Giá trị nhỏ nhất của biểu thức \(\left|x-100\right|+\left(x-y\right)^2+100\) là 100 khi x=100 và y=100

Bài 2:

b) \(-125-\left(x-4\right)^2-\left(y-5\right)^2\)

Ta có: \(-125-\left(x-4\right)^2-\left(y-5\right)^2=-\left(x-4\right)^2-\left(y-5\right)^2-125\)

Ta có: \(\left(x-4\right)^2\ge0\forall x\)

\(\Rightarrow-\left(x-4\right)^2\le0\forall x\)

Ta có: \(\left(y-5\right)^2\ge0\forall y\)

\(\Rightarrow-\left(y-5\right)^2\le0\forall y\)

Do đó: \(-\left(x-4\right)^2-\left(y-5\right)^2\le0\forall x,y\)

\(\Rightarrow-\left(x-4\right)^2-\left(y-5\right)^2-125\le-125\forall x,y\)

Dấu '=' xảy ra khi

\(\left\{{}\begin{matrix}\left(x-4\right)^2=0\\\left(y-5\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-4=0\\y-5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=5\end{matrix}\right.\)

Vậy: Giá trị lớn nhất của biểu thức \(-125-\left(x-4\right)^2-\left(y-5\right)^2\) là -125 khi x=4 và y=5

13 tháng 2 2020

phần a bài 2 đâu bn

22 tháng 2 2015

a) Ta có (x - 3)2 > 0

(y - 2)2 > 0

3 > 0

=> (x - 3)2 + (y - 2)2 + 3 > 3

=> min (x - 3)2 + (y - 2)2 + 3 = 3 <=> x = 3; y = 2

b) Ta có |x + 50| > 0

             (x - y)2 > 0

             100 > 0

=> |x + 50| + (x - y)2 + 100 > 100

=> min |x + 50| + (x - y)2 + 100 = 100 <=> x = y = - 50

a)\(GTNN\)của \(A=5\)tại \(x=1;y=3\)

b)\(GTNN\)của \(B=100\)tại \(x=y=100\)

3 tháng 7 2018

Bài 1:

a) \(A=\left(x-2\right)^2-1\)

Ta có: \(\left(x-2\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-2\right)^2-1\ge-1\forall x\)

\(A=-1\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x=2\)

Vậy \(A_{min}=-1\Leftrightarrow x=2\)

b) \(B=\left(x^2-9\right)^2+\left|y-2\right|+10\)

Ta có: \(\hept{\begin{cases}\left(x^2-9\right)^2\ge0\forall x\\\left|y-2\right|\ge0\forall y\end{cases}\Rightarrow\left(x^2-9\right)^2+\left|y-2\right|+10\ge10\forall x;y}\)

\(B=10\Leftrightarrow\hept{\begin{cases}\left(x^2-9\right)^2=0\\\left|y-2\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x^2-9=0\\y-2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\pm3\\y=2\end{cases}}}\)

Vậy \(B_{min}=10\Leftrightarrow x=\pm3;y=2\)

Bài 2: \(C=\frac{3}{\left(x-2\right)^2}+5\)

Ta có:  \(\frac{3}{\left(x-2\right)^2}\ge0\forall x\)

\(\Rightarrow\frac{3}{\left(x-2\right)^2}+5\ge5\forall x\)

\(\Rightarrow\) C không có giá trị lớn nhất

Vậy C không có giá trị lớn nhất

d) \(D=-10-\left(x-3\right)^2-\left|y-5\right|\)

Ta có: \(\hept{\begin{cases}\left(x-3\right)^2\ge0\forall x\\\left|y-5\right|\ge0\forall y\end{cases}}\Rightarrow\hept{\begin{cases}-\left(x-3\right)^2\le0\forall x\\-\left|y-5\right|\le0\forall y\end{cases}}\Rightarrow-\left(x-3\right)^2-\left|y-5\right|-10\ge-10\forall x;y\)

\(D=-10\Leftrightarrow\hept{\begin{cases}\left(x-3\right)^2=0\\\left|y-5\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x-3=0\\y-5=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=5\end{cases}}}\)

Vậy \(D_{m\text{ax}}=-10\Leftrightarrow x=3;y=5\)

3 tháng 7 2018

B1:a,\(\left(x-2\right)^2-1\ge0-1=-1\)

\(\Rightarrow\)GTNN của A là -1 đạt được khi x=2

b,\(\left(x^2-9\right)^2+\left|y-2\right|+10\ge0+0+10=10\)

\(\Rightarrow\)GTNN của B là 10 khi \(\hept{\begin{cases}x^2-9=0\\y-2=0\end{cases}\Rightarrow}\hept{\begin{cases}x=\pm3\\y=2\end{cases}}\)

B2:

a,\(\frac{3}{\left(x-2\right)^2+5}\le\frac{3}{0+5}=\frac{3}{5}\)

\(\Rightarrow\)GTLN của C là \(\frac{3}{5}\) đạt được khi x=2

b,\(-10-\left(x-3\right)^2-\left|y-5\right|\le-10-0-0=-10\)

\(\Rightarrow\)GTLN của D là -10 đạt được khi \(\hept{\begin{cases}x=3\\y=5\end{cases}}\)

AH
Akai Haruma
Giáo viên
28 tháng 6 2024

Biểu thức A không có min/ max

Biểu thức B là sao hả bạn?