Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a :
Theo giả thiết bài ra ta có hệ phương trình :
\(\left\{{}\begin{matrix}P\left(1\right)=1^4+a.1^3+b.1^2+c.1+d=1\\P\left(2\right)=2^4+a.2^3+b.2^2+c.2+d=4\\P\left(3\right)=3^4+a.3^3+b.3^2+c.3+d=7\\P\left(4\right)=4^4+a.4^3+b.4^2+c.4+d=10\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a+b+c+d=0\\8a+4b+2c+d=-12\\27a+9b+3c+d=-74\\64a+16b+4c+d=-246\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}-7a-3b-c=12\\-26a-8b-2c=74\\-63a-15b-3c=246\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=-10\\b=35\\c=-47\\d=0-\left(-10+35-47\right)=22\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}a=-10\\b=35\\c=-47\\d=22\end{matrix}\right.\)
Lời giải:
Để biểu thức có nghĩa thì:
a) \(5x+10>0\Leftrightarrow x>-2\)
b) \(\left\{\begin{matrix} 2x+1\geq 0\\ 3x^2-5x+2\neq 0 \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{-1}{2}\\ (x-1)(3x-2)\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{-1}{2}\\ x\neq 1; x\neq \frac{2}{3}\end{matrix}\right.\)
Bạn vào đây xem thử
Câu hỏi của bababa ânnnanana - Toán lớp 8 | Học trực tuyến
vì đa thức chia là Q(x) bậc hai nên đa thức dư có dạng ax + b.
khi đó P(x) = Q(x). K(x) + ax +b.
lại có Q(x) có 2 nghiệm là 1 và - 1 nên ta có:
P(1) = a + b
P(-1) = -a + b.
mà P(1) = 0; P(-1) = 4. thay vào trên giải hệ ta tìm được a và b.
đặt x-1=y=> x=y+1
\(A_y=5\left(y+1\right)^{2015}-2\left(y+1\right)^{2016}+8\)
Phần số hạng không chứa y của A là
\(5.1^{2015}-2.1^{2016}+8=11\)
f(x)=q(x).(x-1)+R(x) bậc R(x) thấp hơn S(x)=(x-1)=> R(x)= hẳng số
f(1)=5-2+8=11=> r(x)=11