K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
12 tháng 10 2024

Lời giải:

$(x+1)(x+3)(x+5)(x+7)=[(x+1)(x+7)][(x+3)(x+5)]$

$=(x^2+8x+7)(x^2+8x+15)$

$=[(x^2+8x+12)-5][(x^2+8x+12)+3]$

$=(x^2+8x+12)^2+3(x^2+8x+12)-5(x^2+8x+12)-15$

$=(x^2+8x+12)^2-2(x^2+8x+12)-15$

$\Rightarrow (x+1)(x+3)(x+5)(x+7)$ chia $x^2+8x+12$ dư $-15$

19 tháng 3 2020

Ta có: \(A=\left[\left(x+1\right)\left(x+7\right)\right]\left[\left(x+3\right)\left(x+5\right)\right]+2028\)

\(=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+2028\)

Đặt: \(x^2+8x+12=t\) ta có: \(x^2+8x+7=t-5\) và \(x^2+8x+15=t+3\)

Ta có: \(A=\left(t+3\right)\left(t-5\right)+2028=t^2-2t+2013\)chia t dư 2013

Vậy A chia x2 + 8x + 12 dư 2013

27 tháng 6 2017

Ta có:

\(g\left(x\right)=x^2+8x+12=\left(x+2\right)\left(x+6\right)\)

Vì g(x) là đa thức bậc 2 nên đa thức dư khi chia f(x) cho g(x) là đa thức bậc nhất.

Đặt đa thức dư khi chia f(x) cho g(x) là h(x)= ax+b.

Ta có

\(h\left(-2\right)=f\left(-2\right)\)

\(\Leftrightarrow-2a+b=1987\)(1)

\(h\left(-6\right)=f\left(-6\right)\)

\(\Leftrightarrow-6a+b=1987\)(2)

Từ (!)(2) suy ra:

\(-2a+b=-6a+b=1987\)

\(\Leftrightarrow-2a=-6a\Leftrightarrow a=0\Rightarrow b=1987\)

Vậy số dư khi chia fx ccho gx là 1987

13 tháng 9 2015

bó tay dù sao mk cũng muốn bạn tick cho mk nha

1 tháng 11 2016

=> e chịu ạ