Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1-x^2}{x}.\left(\frac{x^2}{x+3}-1\right)+\frac{3x^2-14x+3}{x^2+3x}\)
\(A=\frac{\left(x^2-x-3\right)\left(-x^2+1\right)}{x\left(x+3\right)}+\frac{3x^2-14x+3}{x^2+3x}\)
\(A=\frac{\left(x^2-x-3\right)\left(1-x^3\right)}{\left(x+3\right)x}+\frac{3x^2-14x+3}{x\left(x+3\right)}\)
\(A=\frac{\left(x^2-x-3\right)\left(1-x^2\right)+3x^2-14x+3}{\left(x+3\right)x}\)
\(A=\frac{-x^4+x^3+7x^2-15x}{x\left(x+3\right)}\)
\(A=\frac{x\left(-x^3+x^2+7x-15\right)}{x\left(x+3\right)}\)
\(A=\frac{-x^3+x^2+7x-15}{x+3}\)
\(A=-\frac{\left(x+3\right)\left(x^2-4x+5\right)}{x+3}\)
\(A=-\left(x^2-4x+5\right)\)
\(A=-x^2+4x-5\)
Trình độ hơi thấp, có gì sai sót xin bỏ qua cho :)
Bài 1 : Với : \(x>0;x\ne1\)
\(P=\left(1+\frac{1}{\sqrt{x}-1}\right)\frac{1}{x-\sqrt{x}}=\left(\frac{\sqrt{x}}{\sqrt{x}-1}\right).\sqrt{x}\left(\sqrt{x}-1\right)=x\)
Thay vào ta được : \(P=x=25\)
Bài 2 :
a, Với \(x\ge0;x\ne1\)
\(A=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{2}{\sqrt{x}+1}-\frac{2}{x-1}=\frac{x+\sqrt{x}-2\sqrt{x}+2-2}{x-1}\)
\(=\frac{x-\sqrt{x}}{x-1}=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}}{\sqrt{x}+1}\)
Thay x = 9 vào A ta được : \(\frac{3}{3+1}=\frac{3}{4}\)
1/a/
\(A=\frac{2}{xy}+\frac{3}{x^2+y^2}=\left(\frac{1}{xy}+\frac{1}{xy}+\frac{4}{x^2+y^2}\right)-\frac{1}{x^2+y^2}\)
\(\ge\frac{\left(1+1+2\right)^2}{\left(x+y\right)^2}-\frac{1}{\frac{\left(x+y\right)^2}{2}}=16-2=14\)
Dấu = xảy ra khi \(x=y=\frac{1}{2}\)
b/
\(4B=\frac{4}{x^2+y^2}+\frac{8}{xy}+16xy=\left(\frac{4}{x^2+y^2}+\frac{1}{xy}+\frac{1}{xy}\right)+\left(\frac{1}{xy}+16xy\right)+\frac{5}{xy}\)
\(\ge\frac{\left(1+1+2\right)^2}{\left(x+y\right)^2}+2\sqrt{\frac{1}{xy}.16xy}+\frac{5}{\frac{\left(x+y\right)^2}{4}}\)
\(=16+8+20=44\)
\(\Rightarrow B\ge11\)
Dấu = xảy ra khi \(x=y=\frac{1}{2}\)
\(a.2x^2-6x=0\)
\(2x\left(x-3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x=0\\x-3=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\left(t/mđk\right)\\x=3\left(loại,kot/mđk\right)\end{cases}}\)
\(Thay:x=0\left(t/mđk\right)\Leftrightarrow A=\frac{x-3}{x+3}\Rightarrow\frac{0-3}{0+3}=-\frac{3}{3}=-1\left(t/mđk\right)\)
đkxđ là gì ạ
đkxđ là \(x\ne0\)