Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\)\(\frac{2}{\sqrt{x^2-x+1}}\)
\(đkxđ\Leftrightarrow\hept{\begin{cases}x^2-x+1\ge0\\x^2-x+1\ne0\end{cases}\Rightarrow x^2-x+1>0}\)
Mà \(x^2-x+1=x^2-2.\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)với \(\forall x\)
\(\Rightarrow\)Biểu thức luôn được xác định với mọi x
1.
a. ĐKXĐ : x lớn hơn hoặc bằng 1/2
b. A\(\sqrt{2}\)= \(\sqrt{2x+2\sqrt{2x-1}}-\sqrt{2x-2\sqrt{2x-1}}\)
= \(\sqrt{2x-1+1+2\sqrt{2x-1}}-\sqrt{2x-1+1-2\sqrt{2x-1}}\)
=\(\sqrt{\left(\sqrt{2x-1}+1\right)^2}-\sqrt{\left(\sqrt{2x-1}-1\right)^2}\)
= \(\sqrt{2x-1}+1-\left|\sqrt{2x-1}-1\right|\)
Nếu \(x\ge1thìA\sqrt{2}=\sqrt{2x-1}+1-\left(\sqrt{2x-1}-1\right)=2\)
\(\Rightarrow A=2\)
Nếu 1/2 \(\le x< 1thìA\sqrt{2}=\sqrt{2x-1}+1-\left(1-\sqrt{2x-1}\right)=2\sqrt{2x-1}\)
Do đó : A= \(\sqrt{4x-2}\)
Vậy ............
2.
a. \(x\ge2\)hoặc x<0
b. A= \(2\sqrt{x^2-2x}\)
c. A<2 \(\Leftrightarrow\)\(2\sqrt{x^2-2x}< 2\Leftrightarrow\sqrt{x^2-2x}< 1\Leftrightarrow x^2-2x< 1\Leftrightarrow\left(x-1\right)^2< 2\)
\(-\sqrt{2}< x-1< \sqrt{2}\Leftrightarrow1-\sqrt{2}< x< 1+\sqrt{2}\)
Kết hợp vs đk câu a , ta đc : \(1-\sqrt{2}< x< 0và2\le x< 1+\sqrt{2}\)
Vậy...........
\(A=\frac{1}{\sqrt{x^2}-2x-1}=\frac{1}{\left|x\right|-2x-1}\)
* Xét \(x\ge0\)thì \(\left|x\right|=x\)
Lúc đó\(A=\frac{1}{x-2x-1}=\frac{1}{-x-1}\)
A có nghĩa\(\Leftrightarrow-x-1\ne0\Leftrightarrow x\ne-1\)
* Xét \(x< 0\)thì \(\left|x\right|=-x\)
Lúc đó\(A=\frac{1}{-x-2x-1}=\frac{1}{-3x-1}\)
A có nghĩa\(\Leftrightarrow-3x-1\ne0\Leftrightarrow x\ne\frac{-1}{3}\)
\(b,\sqrt{\frac{2x-1}{x+3}}\)
\(Đk:\)\(x+3\ne0\Rightarrow x\ne-3\)
Và \(\frac{2x-1}{x+3}\ge0\)
Khi \(\frac{2x-1}{x+3}=0\Rightarrow2x-1=0\)
\(\Rightarrow2x=1\Rightarrow x=\frac{1}{2}\)
Khi \(\frac{2x-1}{x+3}>0\)\(\Rightarrow\orbr{\begin{cases}2x-1>0;x+3>0\\2x-1< 0;x+3< 0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x>\frac{1}{2};x>-3\\x< \frac{1}{2};x< -3\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x>\frac{1}{2}\\x< -3\end{cases}}\)
Vậy căn thức xác định khi \(x\ge\frac{1}{2};x< -3\)
Điều kiện xác định là
\(\hept{\begin{cases}x^2-1\ge0\\x+1>0\\\left(1-x\right)\left(2x+1\right)\ge0\end{cases}}\)
=> x = 1
bạn làm lại giúp mình với thay \(\sqrt{x^2-1}=\sqrt{x^2-4}\)
a) Để \(\frac{1}{1-\sqrt{x-2}}\)xác định thì \(1-\sqrt{x-2}\ne0\)
\(\Leftrightarrow\sqrt{x-2}\ne1\)
\(\Leftrightarrow x\ne3\)
ĐKXĐ: \(x\ne3\)
c) Để biểu thức xác định thì \(\hept{\begin{cases}x-2\ge0\\x+1\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge2\\x\ge-1\end{cases}}\)
ĐKXĐ:\(x\ge2\)
a) ĐKXĐ: \(x\ge0\); \(1-4x\ne\)0; \(2\sqrt{x}-1\ne0\); \(\frac{1+2x}{1-4x}-\frac{2\sqrt{x}}{2\sqrt{x}-1}-1\ne\)0
<=> \(x\ge0\); x \(\ne\)1/4
Ta có: \(A=\left(\frac{\sqrt{x}-4x}{1-4x}-1\right):\left(\frac{1+2x}{1-4x}-\frac{2\sqrt{x}}{2\sqrt{x}-1}-1\right)\)
\(A=\left(\frac{\sqrt{x}-4x-1+4x}{1-4x}\right):\left(\frac{1+2x+2\sqrt{x}\left(2\sqrt{x}+1\right)-1+4x}{\left(1-2\sqrt{x}\right)\left(1+2\sqrt{x}\right)}\right)\)
\(A=\frac{\sqrt{x}-1}{1-4x}\cdot\frac{1-4x}{6x+4x+2\sqrt{x}}\)
\(A=\frac{\sqrt{x}-1}{10x+2\sqrt{x}}\)
b)Với x \(\ge\)0 và x \(\ne\)1/4
Ta có: A > A2 <=> \(\frac{\sqrt{x}-1}{10x+2\sqrt{x}}>\left(\frac{\sqrt{x}-1}{10x+2\sqrt{x}}\right)^2\)
<=> \(\frac{\sqrt{x}-1}{10x+2\sqrt{x}}\cdot\left(1-\frac{\sqrt{x}-1}{10x+2\sqrt{x}}\right)>0\)
<=> \(\frac{\sqrt{x}-1}{10x+2\sqrt{x}}\cdot\frac{10x+2\sqrt{x}-\sqrt{x}+1}{10x+2\sqrt{x}}>0\)
<=> \(\frac{\sqrt{x}-1}{10x+2\sqrt{x}}\cdot\frac{10+\sqrt{x}+1}{10x+2\sqrt{x}}>0\)
<=> \(\sqrt{x}-1>0\) <=> \(x>1\)
c) Với x\(\ge\)0 và x \(\ne\)1/4 (1)
Ta có: \(\left|A\right|>\frac{1}{4}\) <=> \(\orbr{\begin{cases}A>\frac{1}{4}\\A< -\frac{1}{4}\end{cases}}\)
TH1: \(A>\frac{1}{4}\) <=> \(\frac{\sqrt{x}-1}{10x+2\sqrt{x}}>\frac{1}{4}\)
<=> \(4\left(\sqrt{x}-1\right)>10x+2\sqrt{x}\)
<=> \(4\sqrt{x}-4>10x+2\sqrt{x}\)
<=> \(10x-2\sqrt{x}+4< 0\)(vô liia vì \(10x-2\sqrt{x}+4>0\))
TH2: \(A< -\frac{1}{4}\) <=> \(\frac{\sqrt{x}-1}{10x+2\sqrt{x}}< -\frac{1}{4}\)
<=> \(4\left(\sqrt{x}-1\right)< -10x-2\sqrt{x}\)
<=> \(4\sqrt{x}-4+10x+2\sqrt{x}< 0\)
<=> \(10x+6\sqrt{x}-4< 0\)
<=> \(5x+3\sqrt{x}-2< 0\)
<=> \(\left(5\sqrt{x}-2\right)\left(\sqrt{x}+1\right)< 0\)
<=> \(x< \frac{4}{25}\) (2)
Từ (1) và (2) => \(0\le x< \frac{4}{25}\)
ĐKXĐ của A :\(\sqrt{x^2-2x-1}>0\Rightarrow x^2-2x+1-2>0\Rightarrow\left(x-1\right)^2>2\Rightarrow-\sqrt{2}< x-1< \sqrt{2}\)
\(\Rightarrow1-\sqrt{2}< x< \sqrt{2}+1\)