K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 9 2021

\(2-4\sqrt{5x}+8\)

\(ĐKXĐ:5x\ge0\Leftrightarrow x\ge0\)

3 tháng 7 2016

Không cần! theo mình là như thế, nhưng trong phần trình bày, đầu tiên vẫn là:

1./ ĐK: x2 + 5x + 8 >= 0 (nhưng không cần giải để thầy cô biết là mình vẫn cẩn thận và thuộc bài)

Sau đó đến:

2./ Bình phương 2 vế ta có:

x2 + 5x + 8 = 4 (nếu cái nhày có nghiệm thì đương nhiên là x2 + 5x + 8 = 4 > 0 thì luôn thỏa mãn điều kiện.

3 tháng 7 2016

1) ĐK : x^2+5x+8>=0

2)Bình phương 2 vế ta có : 

x^2 + 5x + 8 = 4 ( nếu cái này có nghiệm thì đường nhiên x^2 + 5x +8=4>0

t nha 

23 tháng 10 2021

a: ĐKXĐ: \(x\ge1\)

b: ĐKXĐ: \(x< 0\)

c: ĐKXĐ: \(\left[{}\begin{matrix}x\ge11\\x\le3\end{matrix}\right.\)

23 tháng 10 2021

1) ĐKXĐ: \(\left\{{}\begin{matrix}2x+11\ge0\\x-1\ge0\end{matrix}\right.\)\(\Leftrightarrow x\ge1\)

2) ĐKXĐ: \(\left\{{}\begin{matrix}-5x\ge0\\x\ne0\end{matrix}\right.\)\(\Leftrightarrow x< 0\)

3) ĐKXĐ: \(7x^2+1\ge0\left(đúng\forall x\right)\Leftrightarrow x\in R\)

4) ĐKXĐ: \(x^2-14x+33\ge0\Leftrightarrow\left(x-11\right)\left(x-3\right)\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-11\ge0\\x-3\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x-11\le0\\x-3\le0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x\ge11\\x\le3\end{matrix}\right.\)

5) ĐKXĐ: 

+) \(-x^2+6x+16\ge0\)

\(\Leftrightarrow-\left(x^2-6x+9\right)+25\ge0\)

\(\Leftrightarrow\left(x-3\right)^2\le25\Leftrightarrow-5\le x-3\le5\)

\(\Leftrightarrow-2\le x\le8\)

+) \(3x^2\ne0\Leftrightarrow x\ne0\)

\(\Rightarrow\left\{{}\begin{matrix}-2\le x\le8\\x\ne0\end{matrix}\right.\)

 

1 tháng 10 2018

Ko có điều kiện xác định của x

Chúc bạn học tốt!

NV
6 tháng 7 2021

ĐKXĐ: \(\left\{{}\begin{matrix}5x-2>0\\3-2x\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>\dfrac{2}{5}\\x\le\dfrac{3}{2}\end{matrix}\right.\) \(\Rightarrow\dfrac{2}{5}< x\le\dfrac{3}{2}\)

28 tháng 6 2023

\(ĐKXD:\left\{{}\begin{matrix}2x^2+5x-3\ge0\\2x-1\ge0\end{matrix}\right.\\ < =>\left\{{}\begin{matrix}2x^2+6x-x-3\ge0\\2x\ge1\end{matrix}\right.\\ < =>\left\{{}\begin{matrix}2x\left(x+3\right)-\left(x+3\right)\ge0\\x\ge\dfrac{1}{2}\end{matrix}\right.\\ < =>\left\{{}\begin{matrix}\left(x+3\right)\left(2x-1\right)\ge0\\x\ge\dfrac{1}{2}\end{matrix}\right.\\ < =>\left\{{}\begin{matrix}\left[{}\begin{matrix}\left\{{}\begin{matrix}x+3\ge0\\2x-1\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x+3\le0\\2x-1\le0\end{matrix}\right.\end{matrix}\right.\\x\ge\dfrac{1}{2}\end{matrix}\right.\)

\(< =>\left\{{}\begin{matrix}\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge-3\\x\ge\dfrac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x\le-3\\x\le\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\\x\ge\dfrac{1}{2}\end{matrix}\right.\\ < =>\left\{{}\begin{matrix}\left[{}\begin{matrix}x\ge\dfrac{1}{2}\\x\le-3\end{matrix}\right.\\x\ge\dfrac{1}{2}\end{matrix}\right.\\ < =>\left\{{}\begin{matrix}x\le-3\\x\ge\dfrac{1}{2}\end{matrix}\right.\)

28 tháng 10 2020

a) đk: \(\hept{\begin{cases}x\ge0\\x\ne9\end{cases}}\)

b) Ta có:

\(P=\frac{\sqrt{x}+2}{\sqrt{x}-3}+\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{3x-8\sqrt{x}+27}{9-x}\)

\(P=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)+2\sqrt{x}\cdot\left(\sqrt{x}-3\right)-3x+8\sqrt{x}-27}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(P=\frac{x+5\sqrt{x}+6+2x-6\sqrt{x}-3x+8\sqrt{x}-27}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(P=\frac{7\sqrt{x}-21}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\frac{7\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(P=\frac{7}{\sqrt{x}+3}\)

c) Nếu x không là số chính phương => P vô tỉ (loại)

=> x là số chính phương khi đó để P nguyên thì:

\(\left(\sqrt{x}+3\right)\inƯ\left(7\right)\) , mà \(\sqrt{x}+3\ge3\left(\forall x\ge0\right)\)

\(\Rightarrow\sqrt{x}+3=7\Leftrightarrow\sqrt{x}=4\Rightarrow x=16\)

Vậy x = 16 thì P nguyên