Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{5x-3}{2x}+\sqrt{3x+y}xđ\Leftrightarrow\hept{\begin{cases}2x\ne0\\3x+y\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ge-\frac{y}{3}\end{cases}}}\)
\(\sqrt{3x-1}+\frac{5x}{\sqrt{x+3}}xđ\Leftrightarrow\hept{\begin{cases}3x-1\ge0\\x+3>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge\frac{1}{3}\\x>-3\end{cases}\Rightarrow x\ge\frac{1}{3}}\)
1.
a. ĐKXĐ : x lớn hơn hoặc bằng 1/2
b. A\(\sqrt{2}\)= \(\sqrt{2x+2\sqrt{2x-1}}-\sqrt{2x-2\sqrt{2x-1}}\)
= \(\sqrt{2x-1+1+2\sqrt{2x-1}}-\sqrt{2x-1+1-2\sqrt{2x-1}}\)
=\(\sqrt{\left(\sqrt{2x-1}+1\right)^2}-\sqrt{\left(\sqrt{2x-1}-1\right)^2}\)
= \(\sqrt{2x-1}+1-\left|\sqrt{2x-1}-1\right|\)
Nếu \(x\ge1thìA\sqrt{2}=\sqrt{2x-1}+1-\left(\sqrt{2x-1}-1\right)=2\)
\(\Rightarrow A=2\)
Nếu 1/2 \(\le x< 1thìA\sqrt{2}=\sqrt{2x-1}+1-\left(1-\sqrt{2x-1}\right)=2\sqrt{2x-1}\)
Do đó : A= \(\sqrt{4x-2}\)
Vậy ............
2.
a. \(x\ge2\)hoặc x<0
b. A= \(2\sqrt{x^2-2x}\)
c. A<2 \(\Leftrightarrow\)\(2\sqrt{x^2-2x}< 2\Leftrightarrow\sqrt{x^2-2x}< 1\Leftrightarrow x^2-2x< 1\Leftrightarrow\left(x-1\right)^2< 2\)
\(-\sqrt{2}< x-1< \sqrt{2}\Leftrightarrow1-\sqrt{2}< x< 1+\sqrt{2}\)
Kết hợp vs đk câu a , ta đc : \(1-\sqrt{2}< x< 0và2\le x< 1+\sqrt{2}\)
Vậy...........
a, \(\sqrt{x^2+12x+40}\)
\(=\sqrt{\left(x+6\right)^2+4}\)
Biểu thức trên xác định \(\Leftrightarrow\left(x+6\right)^2+4\ge0\) mà \(\left(x+6\right)^2\ge0\forall x\Rightarrow\left(x+6\right)^2+4\ge4\forall x\)
Vậy biểu thức trên xác định với mọi x
b, \(\frac{1}{\sqrt{9x^2-6x+1}}\)
\(=\frac{1}{\sqrt{\left(3x-1\right)^2}}\)
Biểu thức trên xác định \(\Leftrightarrow\hept{\begin{cases}\left(3x-1\right)^2\ge0\\\left(3x-1\right)^2\ne0\end{cases}}\)
\(\Leftrightarrow\left(3x-1\right)^2\ne0\)vì (3x-1)2 luôn \(\ge\)0 với mọi x
\(\Leftrightarrow3x-1\ne0\Leftrightarrow3x\ne1\Leftrightarrow x\ne\frac{1}{3}\)
Vậy biểu thức trên xác định khi và chỉ khi \(x\ne\frac{1}{3}\)
c, \(\sqrt{\left(4x^2+2x+3\right)\left(3-2x\right)}\)
\(\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}4x^2+2x+3\ge0\\3-2x\ge0\end{cases}}\\\hept{\begin{cases}4x^2+2x+3\le0\\3-2x\le0\end{cases}}\end{cases}}\)Biểu thức trên xác định \(\Leftrightarrow\)\(\hept{\begin{cases}4x^2+2x+3\ge0\\3-2x\ge0\end{cases}}\)(1) hoặc \(\hept{\begin{cases}4x^2+2x+3\le0\\3-2x\le0\end{cases}}\)(2)
mà \(4x^2+2x+3=\left(2x+\frac{1}{2}\right)^2+\frac{11}{4}\)luôn \(\ge\frac{11}{4}\)\(\forall x\)
\(\Rightarrow\)(2) không thỏa mãn, (1) thỏa mãn
Từ (1)\(\Rightarrow3-2x\ge0\)(vì \(4x^2+2x+3\)luôn \(\ge0\forall x\))
\(\Rightarrow3\ge2x\)
\(\Rightarrow\frac{3}{2}\ge x\)hay\(x\le\frac{3}{2}\)
Vậy biểu thức trên xác định khi và chỉ khi \(x\le\frac{3}{2}\)
d, \(\sqrt{\frac{2x^2+3x+16}{5-7x}}\)
=\(\frac{\sqrt{\left(\sqrt{2}x+\frac{3\sqrt{2}}{4}\right)^2+\frac{119}{8}}}{\sqrt{5-7x}}\)
Biểu thức trên xác định \(\Leftrightarrow\hept{\begin{cases}\left(\sqrt{2}x+\frac{3\sqrt{2}}{4}\right)^2\\5-7x>0\end{cases}+\frac{119}{8}\ge0}\)
mà \(\left(\sqrt{2}x+\frac{3\sqrt{2}}{4}\right)^2+\frac{119}{8}\ge\frac{119}{8}\forall x\)
\(\Rightarrow\)Biểu thưc trên xác định \(\Leftrightarrow5-7x>0\)\(\Leftrightarrow5>7x\Leftrightarrow\frac{5}{7}>x\)hay \(x< \frac{5}{7}\)
a)biểu thức có nghĩa khi :
-x4 -2 > 0 <=> - x4 > 2
a) Ta có BH//CF mà CF _|_ AB nên BH _|_ AB
Xét \(\Delta ABH\)vuông tại B có BE là đường cao nên \(AB^2=AH\cdot AE\Rightarrow AC^2=AH\cdot AE\)(vì AE=AC)
b) Vẽ DK _|_ AB khi đó DK là đường trung bình của \(\Delta FBC\)
\(\Rightarrow DK=\frac{1}{2}CF\)
tam giác ABD vuông tại A, DK là đường cao nên \(\frac{1}{DK^2}=\frac{1}{DB^2}+\frac{1}{DA^2}\)
Do đó\(\frac{1}{\left(\frac{CF}{2}\right)^2}=\frac{1}{\left(\frac{BC}{2}\right)^2}+\frac{1}{DA^2}\Rightarrow\frac{4}{CF^2}=\frac{4}{BC^2}+\frac{1}{AD^2}\)
\(\Rightarrow\frac{1}{CF^2}=\frac{1}{BC^2}+\frac{1}{4AD^2}\)
Điều kiện để biểu thức có nghĩa:
\(\hept{\begin{cases}\frac{7x-1}{2x^2+3}\ge0\\3x-2\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}7x-1\ge0\\3x-2\ge0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}7x\ge1\\3x\ge2\end{cases}}\Rightarrow\hept{\begin{cases}x\ge\frac{1}{7}\\x\ge\frac{2}{3}\end{cases}}\Rightarrow x\ge\frac{2}{3}\)
Vậy \(x\ge\frac{2}{3}\) thì BT A có nghĩa
Giải
Do \(\sqrt{a}\ge0\Leftrightarrow a\ge0\). Từ đó dễ dàng giải
a) \(\sqrt{2x^2}\ge0\Leftrightarrow2x^2\ge0\Leftrightarrow x\ge0\)
b) Đề sai bởi vì không có căn bậc 2 của số âm
c) \(\sqrt{2x^2+1}\ge0\Leftrightarrow2x^2+1\ge0\Leftrightarrow2x^2\ge-1\)
d) Đề sai vì không có căn bậc 2 của số âm
e) \(\sqrt{2-x^2}\ge0\Leftrightarrow2-x^2\ge0\Leftrightarrow x^2\le2\)