Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)x\ne\pm\frac{4}{3}\)
\(b)x\ne2\)
\(c)x\ne\pm1\)
\(d)x\ne0;x\ne\frac{1}{2}\)
\(e)x\ne\pm1\)
\(f)x\ne-1;x\ne3\)
\(g)x\ne3;x\ne2\)
a) Để giá trị của phân thức \(\frac{x^2-4}{9x^2-16}\) được xác định thì
\(9x^2-16\ne0\)
⇔(3x-4)(3x+4)≠0
\(\Leftrightarrow\left\{{}\begin{matrix}3x-4\ne0\\3x+4\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x\ne4\\3x\ne-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne\frac{4}{3}\\x\ne-\frac{4}{3}\end{matrix}\right.\)
Vậy: khi \(x\ne\pm\frac{4}{3}\) thì giá trị của phân thức \(\frac{x^2-4}{9x^2-16}\) được xác định
b) Để giá trị của phân thức \(\frac{2x+1}{x^2-5x+6}\) được xác định thì
\(x^2-5x+6\ne0\)
⇔\(x^2-2x-3x+6\ne0\)
⇔\(\left(x-2\right)\left(x-3\right)\ne0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2\ne0\\x-3\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne2\\x\ne3\end{matrix}\right.\)
Vậy: Khi x≠2 và x≠3 thì giá trị của phân thức \(\frac{2x+1}{x^2-5x+6}\) được xác định
c) Để giá trị của phân thức \(\frac{2x-1}{x^2-4x+4}\) được xác định thì
\(x^2-4x+4\ne0\)
\(\Leftrightarrow\left(x-2\right)^2\ne0\)
hay x-2≠0
hay x≠2
Vậy: khi x≠2 thì giá trị của phân thức \(\frac{2x-1}{x^2-4x+4}\) được xác định
b: \(=\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}\)
\(=\dfrac{\left(x+2\right)\left(x+3\right)+\left(x+1\right)\left(x+3\right)+\left(x+2\right)\left(x+1\right)}{\left(x+2\right)^2\cdot\left(x+1\right)\left(x+3\right)}\)
\(=\dfrac{x^2+5x+6+x^2+4x+3+x^2+3x+2}{\left(x+2\right)^2\cdot\left(x+1\right)\left(x+3\right)}\)
\(=\dfrac{3x^2+12x+11}{\left(x+2\right)^2\cdot\left(x+1\right)\left(x+3\right)}\)
Bài 2: \(a,\frac{7x-1}{2x^2+6x}=\frac{7x-1}{2x\left(x+3\right)}=\frac{\left(7x-1\right)\left(x-3\right)}{2x\left(x+3\right)\left(x-3\right)}\)
\(\frac{5-3x}{x^2-9}=\frac{5-3x}{\left(x-3\right)\left(x+3\right)}=\frac{\left(5-3x\right)2x}{2x\left(x-3\right)\left(x+3\right)}\)
\(b,\frac{x+1}{x-x^2}=\frac{x+1}{x\left(1-x\right)}=-\frac{x+1}{x\left(x+1\right)}=-\frac{2\left(x-1\right)\left(x+1\right)}{2x\left(x-1\right)^2}\)
\(\frac{x+2}{2-4x+2x^2}=\frac{x+2}{2\left(x-1\right)^2}=\frac{2x\left(x+2\right)}{2x\left(x-1\right)^2}\)
\(c,\frac{4x^2-3x+5}{x^3-1}=\frac{4x^2-3x+5}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\frac{2x}{x^2+x+1}=\frac{2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\frac{6}{x-1}=\frac{6\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(d,\frac{7}{5x}=\frac{7.2\left(2y-x\right)\left(2y+x\right)}{2.5x\left(2y-x\right)\left(2y+x\right)}\)
\(\frac{4}{x-2y}=-\frac{4}{2y-x}=-\frac{4.2.5x\left(2x+x\right)}{2.5x\left(2y-x\right)\left(2y+x\right)}\)
\(\frac{x-y}{8y^2-2x^2}=\frac{x-y}{2\left(4y^2-x^2\right)}=\frac{x-y}{2\left(2y-x\right)\left(2y+x\right)}=\frac{5x\left(x-y\right)}{2.5x.\left(2y-x\right)\left(2y+x\right)}\)
a) Để giá trị của biểu thức \(\frac{x-4}{\frac{2x-1}{x-1}}\) được xác định
thì \(\frac{2x-1}{x-1}\ne0\)
⇔\(\left\{{}\begin{matrix}2x-1\ne0\\x-1\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x\ne1\\x\ne1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne\frac{1}{2}\\x\ne1\end{matrix}\right.\)
Vậy: ĐKXĐ của biểu thức \(\frac{x-4}{\frac{2x-1}{x-1}}\) là \(x\ne\frac{1}{2}\) và x≠1
b)
Để giá trị của biểu thức \(\frac{-5}{\frac{x-2}{3x+1}}\) được xác định
thì \(\frac{x-2}{3x+1}\ne0\)
⇔\(\left\{{}\begin{matrix}x-2\ne0\\3x+1\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne2\\3x\ne-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne2\\x\ne\frac{-1}{3}\end{matrix}\right.\)
Vậy: ĐKXĐ của biểu thức \(\frac{-5}{\frac{x-2}{3x+1}}\) là \(x\ne\frac{-1}{3}\) và x≠2
c)Để giá trị của biểu thức \(\frac{x^2+2x+5}{2x^2+5x+3}\) thì \(2x^2+5x+3\ne0\)
hay \(2x^2+2x+3x+3\ne0\Leftrightarrow2x\left(x+1\right)+3\left(x+1\right)\ne0\)
\(\Leftrightarrow\left(x+1\right)\left(2x+3\right)\ne0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+1\ne0\\2x+3\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne-1\\2x\ne-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne1\\x\ne\frac{-3}{2}\end{matrix}\right.\)
Vậy: Để giá trị của biểu thức \(\frac{x^2+2x+5}{2x^2+5x+3}\) được xác định thì \(x\ne\frac{-3}{2}\) và x≠1
d) Để giá trị của biểu thức \(\frac{x^2}{\left(x+y\right)\left(1-y\right)}\) được xác định thì
\(\left(x+y\right)\left(1-y\right)\ne0\)
hay \(\left\{{}\begin{matrix}x+y\ne0\\1-y\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+1\ne0\\y\ne1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne-1\\y\ne1\end{matrix}\right.\)
Vậy: Để giá trị của biểu thức \(\frac{x^2}{\left(x+y\right)\left(1-y\right)}\) được xác định thì x≠-1 và y≠1
e) Để giá trị của biểu thức \(\frac{x^2y^2}{\left(1+x\right)\left(1-y\right)}\) được xác định thì
\(\left(1+x\right)\left(1-y\right)\ne0\)
hay \(\left\{{}\begin{matrix}1+x\ne0\\1-y\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne-1\\y\ne1\end{matrix}\right.\)
Vậy: Để giá trị của biểu thức \(\frac{x^2y^2}{\left(1+x\right)\left(1-y\right)}\)được xác định thì x≠-1 và y≠1
Câu 1 :
a) ĐKXĐ : \(\hept{\begin{cases}x+1\ne0\\2x-6\ne0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x\ne-1\\x\ne3\end{cases}}\)
b) Để \(P=1\Leftrightarrow\frac{4x^2+4x}{\left(x+1\right)\left(2x-6\right)}=1\)
\(\Leftrightarrow\frac{4x^2+4x-\left(x+1\right)\left(2x-6\right)}{\left(x+1\right)\left(2x-6\right)}=0\)
\(\Rightarrow4x^2+4x-2x^2+4x+6=0\)
\(\Leftrightarrow2x^2+8x+6=0\)
\(\Leftrightarrow x^2+4x+4-1=0\)
\(\Leftrightarrow\left(x+2-1\right)\left(x+2+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+3=0\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x=-1\left(KTMĐKXĐ\right)\\x=-3\left(TMĐKXĐ\right)\end{cases}}\)
Vậy : \(x=-3\) thì P = 1.
a) ĐKXĐ: x khác +2
\(\frac{x-2}{2+x}-\frac{3}{x-2}-\frac{2\left(x-11\right)}{x^2-4}\)
<=> \(\frac{x-2}{2+x}-\frac{3}{x-2}=\frac{2\left(x-11\right)}{\left(x-2\right)\left(x+2\right)}\)
<=> (x - 2)^2 - 3(2 + x) = 2(x - 11)
<=> x^2 - 4x + 4 - 6 - 3x = 2x - 22
<=> x^2 - 7x - 2 = 2x - 22
<=> x^2 - 7x - 2 - 2x + 22 = 0
<=> x^2 - 9x + 20 = 0
<=> (x - 4)(x - 5) = 0
<=> x - 4 = 0 hoặc x - 5 = 0
<=> x = 4 hoặc x = 5
làm nốt đi
Mình làm mẫu cho 1 câu nha !
a, ĐKXĐ : x khác -3 ; -1 ; 2
Biểu thức = 2/x-2 - 2/(x+1).(x-2) . (1+x) = 2/x-2 - 2/x-2 = 0
=> Với điều kiện xác định thì giá trị biểu thức ko phụ thuộc vào biến
k mk nha
ai giúp mình vớiiiii
a, ĐKXĐ:
9x^2 - 16 ≠ 0
=> (3x - 4)(3x + 4) ≠ 0
=> 3x - 4 ≠ 0 và 3x + 4 ≠ 0
=> 3x ≠ 4 và 3x ≠ -4
=> x ≠ 4/3 hoặc x ≠ -4/3
b, ĐKXĐ:
x^2 - 5x + 6 ≠ 0
=> x^2 - 2x - 3x + 6 ≠ 0
=> x(x - 2) - 3(x - 2) ≠ 0
=> (x - 3)(x - 2) ≠ 0
=> x - 3 ≠ 0 và x - 2 ≠ 0
=> x ≠ 3 và x ≠ 2
c, ĐKXĐ :
x^2 - 4x + 4 ≠ 0
=> (x - 2)^2 ≠ 0
=> x - 2 ≠ 0
=> x ≠ 2